ON DESTABILIZING IMPLICIT FACTORS IN DISCRETE ADVECTION-DIFFUSION EQUATIONS

被引:4
作者
BECKERS, JM
机构
[1] GHER, Mécanique des Fluides Géophysiques, University of Liège, B-4000 Liège
关键词
D O I
10.1006/jcph.1994.1061
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the present paper, we find necessary and sufficient stability conditions for a simple one-time step finite difference discretization of an N-dimensional advection-diffusion equation. Furthermore, it is shown that when the implicit factors differ in each direction, a strange behavior occurs: By increasing one implicit factor in only one direction, a stable scheme can become unstable. It is thus suggested to use a single implicit direction (for efficient computing), or the same implicit factor in each direction. (C) 1994 Academic Press, Inc.
引用
收藏
页码:260 / 265
页数:6
相关论文
共 7 条
[1]   ANALYTICAL LINEAR NUMERICAL STABILITY CONDITIONS FOR AN ANISOTROPIC 3-DIMENSIONAL ADVECTION-DIFFUSION EQUATION [J].
BECKERS, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (03) :701-713
[2]  
FROMM JE, 1964, METHODS COMPUTATIONA, V3, P345
[4]   STABILITY ANALYSIS OF FINITE-DIFFERENCE SCHEMES FOR 2-DIMENSIONAL ADVECTION DIFFUSION-PROBLEMS [J].
RIGAL, A .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1991, 13 (05) :579-597
[5]  
Roache P. J., 1976, COMPUTATIONAL FLUID
[6]   THE CELL REYNOLDS-NUMBER MYTH [J].
THOMPSON, HD ;
WEBB, BW ;
HOFFMAN, JD .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1985, 5 (04) :305-310
[7]  
van Leer B., 1969, Journal of Computational Physics, V3, P473, DOI 10.1016/0021-9991(69)90056-4