HOPF-BIFURCATION FOR IMPLICIT NEUTRAL FUNCTIONAL-DIFFERENTIAL EQUATIONS

被引:2
作者
KACZYNSKI, T
XIA, HX
机构
[1] UNIV SHERBROOKE, DEPT MATH & INFORMAT, SHERBROOKE J1K 2R1, QUEBEC, CANADA
[2] UNIV ALBERTA, DEPT MATH, EDMONTON T6G 2G1, ALBERTA, CANADA
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 1993年 / 36卷 / 03期
关键词
D O I
10.4153/CMB-1993-041-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An analog of the Hopf bifurcation theorem is proved for implicit neutral functional differential equations of the form F(x(t), D'(x(t), alpha), alpha) = 0. The proof is based on the method of S1-degree of convex-valued mappings. Examples illustrating the theorem are provided.
引用
收藏
页码:286 / 295
页数:10
相关论文
共 30 条
  • [1] BIELAWSKI R, 1989, LECT NOTES MATH, V1411, P9
  • [2] BIELAWSKI R, 1986, SOME APPLICATIONS LE, P187
  • [3] Bredon G., 1972, INTRO COMPACT TRANSF
  • [4] Chow S.-N., 1982, METHODS BIFURCATION
  • [5] DDYLAWERSKI G, 1991, ANN POL MATH, V3, P243
  • [6] DEOLIVEIRA JCF, 1980, NONLINEAR ANAL, V4, P217
  • [7] DUGUNDJI J, 1981, FIXED POINT THEORY, V1
  • [8] S(1)-DEGREE AND GLOBAL HOPF-BIFURCATION THEORY OF FUNCTIONAL-DIFFERENTIAL EQUATIONS
    ERBE, LH
    KRAWCEWICZ, W
    GEBA, K
    WU, J
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 98 (02) : 277 - 298
  • [9] ERBE LH, 1990, ROCKY MOUNTAIN J MAT, V4, P899
  • [10] FRIGON M, IN PRESS J MATH ANAL