MANINS QUANTUM SPACES AND STANDARD QUANTUM-MECHANICS

被引:6
作者
FLORATOS, EG
机构
[1] Ecole Normale Supérieure, Laboratoire de Physique Théorique, F-75231 Paris Cedex 05
关键词
D O I
10.1016/0370-2693(90)91087-R
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Manin's non-commutative coordinate algebra of quantum groups is shown to be identical, for unitary coordinates, with the conventional operator algebras of quantum mechanics. The deformation parameter q is a pure phase for unitary coordinates. When q is a root of unity, Manin's algebra becomes the matrix algebra of quantum mechanics for a discretized and finite phase space. Implications for quantum groups and the associated non-commutative differential calculus of Wess and Zumino are discussed.
引用
收藏
页码:97 / 100
页数:4
相关论文
共 23 条
[1]  
Balian R., 1986, CR HEBD ACAD SCI, V16, P773
[2]  
CONNES A, 1986, I HAUTES ETUDES SCI, V62
[3]   SOME ASPECTS OF QUANTUM GROUPS AND SUPERGROUPS [J].
CORRIGAN, E ;
FAIRLIE, DB ;
FLETCHER, P ;
SASAKI, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (04) :776-780
[4]   NONCOMMUTATIVE DIFFERENTIAL GEOMETRY OF MATRIX ALGEBRAS [J].
DUBOISVIOLETTE, M ;
KERNER, R ;
MADORE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (02) :316-321
[5]  
FADEEV LD, LOMI E1487 PREPR
[6]   REPRESENTATIONS OF THE QUANTUM GROUP GLQ(2) FOR VALUES OF Q ON THE UNIT-CIRCLE [J].
FLORATOS, EG .
PHYSICS LETTERS B, 1989, 233 (3-4) :395-399
[7]   THE HEISENBERG-WEYL GROUP ON THE ZNXZN DISCRETIZED TORUS MEMBRANE [J].
FLORATOS, EG .
PHYSICS LETTERS B, 1989, 228 (03) :335-340
[8]  
Guillemin V., 1984, SYMPLECTIC TECHNIQUE
[9]  
JIMBO M, 1986, LETT MATH PHYS, V11, P247, DOI 10.1007/BF00400222
[10]   A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION [J].
JIMBO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) :63-69