A Discrete Convolution on the Generalized Hosoya Triangle

被引:0
作者
Czabarka, Eva [1 ]
Florez, Rigoberto [2 ]
Junes, Leandro [3 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
[2] The Citadel, Dept Math & Comp Sci, Charleston, SC 29409 USA
[3] Calif Univ Penn, Dept Math Comp Sci & Informat Syst, California, PA 15419 USA
关键词
Hosoya triangle; generalized Fibonacci number; convolution; non-decreasing Dyck path; Fibonacci binary word;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generalized Hosoya triangle is an arrangement of numbers where each entry is a product of two generalized Fibonacci numbers. We define a discrete convolution C based on the entries of the genealized Hosoya triangle. We use C and generating functions to prove that the sum of every k-th entry in the n-th row or diagonal of generalized Hosoya triangle, beginning on the left with the first entry, is a linear combination of rational functions on Fibonacci numbers and Lucas numbers. A simple formula is given for a particular case of this convolution. We also show that C summarizes several sequences in the OEIS. As an application, we use our convolution to enumerate many statistics in combinatorics.
引用
收藏
页数:22
相关论文
共 11 条
  • [1] Czabarka E., SOME ENUMER IN PRESS
  • [2] 2 COMBINATORIAL STATISTICS ON DYCK PATHS
    DENISE, A
    SIMION, R
    [J]. DISCRETE MATHEMATICS, 1995, 137 (1-3) : 155 - 176
  • [3] Florez R., 2014, J INTEGER SEQ, V17
  • [4] Florez R, 2012, FIBONACCI QUART, V50, P163
  • [5] Florez R, 2014, J INTEGER SEQ, V17
  • [6] Griffiths M, 2011, FIBONACCI QUART, V49, P51
  • [7] HOSOYA H, 1976, FIBONACCI QUART, V14, P173
  • [8] Klavzar S, 2007, PUBL MATH-DEBRECEN, V71, P267
  • [9] Koshy T., 2001, PUR AP M-WI
  • [10] Sloane N.J.A., ON LINE ENCY INTEGER