PERTURBATION ANALYSIS OF LINEAR-PROGRAMMING PROBLEMS WITH RANDOM PARAMETERS

被引:0
作者
ELSAYED, EA [1 ]
ETTOUNEY, M [1 ]
机构
[1] WEIDLINGER ASSOCIATES,NEW YORK,NY 10001
基金
美国国家科学基金会;
关键词
Linear programming;
D O I
10.1016/0305-0548(94)90054-X
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a methodology for analyzing large scale engineering problems with uncertain parameters. The coefficients of the objective function, the coefficients of the decision variables and the right hand side of the constraints are functions of random variables. The optimization problem is solved using the traditional simplex method. The uncertain parameters in the equations are expanded in the Taylor series. It is shown that the resulting equations are actually a set of linear programming recursive equations. Upon solving these equations, the required probabilistic statements can be easily established. An engineering example is provided to demonstrate the use of this methodology.
引用
收藏
页码:211 / 224
页数:14
相关论文
共 10 条
  • [1] BEALE EML, 1955, J ROY STAT SOC B, V17, P173
  • [2] Benaroya H., 1992, J AEROSP ENG ASCE, V5, P187
  • [3] BENAROYA H, 1988, APPL MECH REV, V41, P201, DOI DOI 10.1115/1.3151892
  • [4] LINEAR PROGRAMMING UNDER UNCERTAINTY
    Dantzig, George B.
    [J]. MANAGEMENT SCIENCE, 1955, 1 (3-4) : 197 - 206
  • [5] BOUNDARY ELEMENT METHODS IN PROBABILISTIC STRUCTURAL-ANALYSIS (PBEM)
    ETTOUNEY, M
    BENAROYA, H
    WRIGHT, J
    [J]. APPLIED MATHEMATICAL MODELLING, 1989, 13 (07) : 432 - 441
  • [6] Love AEH., 1944, TREATISE MATH THEORY
  • [7] PREKOPA A, 1988, RRR3788 RUTG U
  • [8] QI LQ, 1986, MATH PROGRAM STUD, V27, P183, DOI 10.1007/BFb0121120
  • [9] Siddall J.N., 1972, ANAL DECISION MAKING
  • [10] WETS R, 1983, STOCHASTICS, V10, P219