CONVERGENCE OF THE VISCOSITY METHOD FOR A NONSTRICTLY HYPERBOLIC CONSERVATION LAW

被引:23
作者
LU, YG
机构
[1] Wuhan Institute of Mathematical Sciences, Academia Sinica, Wuhan, 430071
关键词
D O I
10.1007/BF02096565
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A convergence theorem for the method of artificial viscosity applied to the nonstrictly hyperbolic system upsilon(t) + (upsilonu)x = 0, u(t) + (1/2u2 + integral(upsilon) s(s + delta)r-3ds)x = 0 (delta > 0, r > 3) is established. Convergence of a subsequence in the strong topology is proved without uniform estimates on the derivatives using the theory of compensated compactness and an analysis of progressing entropy waves.
引用
收藏
页码:59 / 64
页数:6
相关论文
共 11 条
[1]  
CHEN GQ, 1989, CHINESE SCI BULL, V34, P15
[2]  
CHUEH KN, 1977, INDIANA U MATH J, V26, P372
[3]  
DING XX, 1985, ACTA MATH SCI, V4, P483
[4]   GLOBAL SOLUTIONS TO A CLASS OF NONLINEAR HYPERBOLIC SYSTEMS OF EQUATIONS [J].
DIPERNA, RJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1973, 26 (01) :1-28
[5]   CONVERGENCE OF THE VISCOSITY METHOD FOR ISENTROPIC GASDYNAMICS [J].
DIPERNA, RJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 91 (01) :1-30
[6]   CONVERGENCE OF APPROXIMATE SOLUTIONS TO CONSERVATION-LAWS [J].
DIPERNA, RJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1983, 82 (01) :27-70
[7]  
KAMKE E, 1971, DIFFERENTIALGLEICHUN
[8]  
LU Y, 1992, ACTA MATH SCI, V12
[9]  
LU Y, IN PRESS P ROYAL SOC
[10]  
Lu Y. G., 1989, APPL ANAL, V31, P239