ANALYTIC PROPERTIES OF STANDARD ZETA-FUNCTIONS OF SIEGEL MODULAR-FORMS

被引:32
作者
ANDRIANOV, AN
KALININ, VL
机构
来源
MATHEMATICS OF THE USSR-SBORNIK | 1979年 / 35卷 / 01期
关键词
D O I
10.1070/SM1979v035n01ABEH001443
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that standard zeta functions (analogs of the zeta functions of Rankin and Shimura) for holomorphic cusp forms with respect to congruence subgroups of the form of the Siegel modular group of arbitrary even degree have a meromorphic continuation. For the case, with some additional restrictions, it is proved that the zeta functions are holomorphic except for a finite number of poles, and a functional equation is obtained. Bibliography: 9 titles. © 1979 IOP Publishing Ltd.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 9 条
[1]  
ANDRIANOV A, 1978, MAT SBORNIK, V105, P291
[2]  
Andrianov A.N., 1974, USPEHI MAT NAUK, V29, P43
[3]  
ANDRIANOV AN, 1976, T MAT I STEKLOVA, V142, P22
[4]  
EBERHARD F, 1975, INVENT MATH, V30, P181
[5]  
KALININ VL, 1977, MAT SBORNIK, V103, P519
[6]  
Langlands R. P., 1971, EULER PRODUCTS
[7]  
MAAS H, 1971, LECTURE NOTES MATH, V216
[8]   AUTOMORPHIC FORMS OF SINGULAR WEIGHT ARE SINGULAR FORMS [J].
RESNIKOFF, HL .
MATHEMATISCHE ANNALEN, 1975, 215 (02) :173-193
[9]  
[No title captured]