SHORT PROOF OF THE EXISTENCE OF HIGHLY CHROMATIC HYPERGRAPHS WITHOUT SHORT CYCLES

被引:52
作者
NESETRIL, J
RODL, V
机构
[1] KZAA MFF UK, 18600 Praha 8
关键词
D O I
10.1016/0095-8956(79)90084-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the operation of amalgamation we prove that for every k, n, p there exists a k-graph G (i.e., a k-uniform hypergraph) without cycles of length ≤p such that the chromatic number of G is at least n. © 1979.
引用
收藏
页码:225 / 227
页数:3
相关论文
共 9 条
[1]   ON CHROMATIC NUMBER OF GRAPHS AND SET-SYSTEMS [J].
ERDOS, P ;
HAJNAL, A .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1966, 17 (1-2) :61-&
[2]  
Erdos P., 1959, CANADIAN J MATH, V11, P34
[3]   ON CHROMATIC NUMBER OF FINITE SET-SYSTEMS [J].
LOVASZ, L .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1968, 19 (1-2) :59-&
[4]   PARTITIONS OF FINITE RELATIONAL AND SET SYSTEMS [J].
NESETRIL, J ;
RODL, V .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1977, 22 (03) :289-312
[5]  
NESETRIL J, UNPUBLISHED
[6]  
Nesetril J., 1966, COMMENT MATH U CAROL, V7, P373
[7]  
Walther H., 1974, KREISE GRAPHEN
[8]  
Zykov A.A., 1949, MATEMATICHESKII SBOR, V66, P163
[9]  
[No title captured]