ON THE GLOBAL STRUCTURE OF CRYSTALLINE SURFACES

被引:6
作者
TAYLOR, JE
机构
[1] Mathematics Department, Rutgers University, New Brunswick, 08903, NJ
关键词
D O I
10.1007/BF02574687
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We bound the number of plane segments in a crystalline minimal surface S in terms of its Euler characteristic, the number of line segments in its boundary, and a factor determined by the Wulff shape W of its surface energy function. A major technique in the proofs is to quantize the Gauss map of S based on the Gauss map of W. One thereby bounds the number of positive-curvature corners and the interior complexity of S.
引用
收藏
页码:225 / 262
页数:38
相关论文
共 14 条
[1]   EQUILIBRIUM SHAPES OF CRYSTALS IN A GRAVITATIONAL-FIELD - CRYSTALS ON A TABLE [J].
AVRON, JE ;
TAYLOR, JE ;
ZIA, RKP .
JOURNAL OF STATISTICAL PHYSICS, 1983, 33 (03) :493-522
[2]  
BUCKLEY HE, 1951, CRYST GROWTH, P442
[3]   THE ISOPERIMETRIC PROBLEM FOR MINKOWSKI AREA [J].
BUSEMANN, H .
AMERICAN JOURNAL OF MATHEMATICS, 1949, 71 (04) :743-762
[4]  
Coxeter H. S. M., 1962, J MATH PURE APPL, V41, P137
[5]  
COXETER HSM, 1973, REGULAR POLYTOPES, P28
[6]  
Fedorov Evgraf Stepanovich, 1893, Z KRYSTALLOGRAPHIE M, V21, P679
[7]  
SENECHAL M, 1885, NOTICES IMPERIAL PET, V24, P1
[8]  
TAYLOR J, 1978, B AM MATH SOC, V84, P569
[9]   CATALOG OF SADDLE SHAPED SURFACES IN CRYSTALS [J].
TAYLOR, JE ;
CAHN, JW .
ACTA METALLURGICA, 1986, 34 (01) :1-12
[10]  
TAYLOR JE, 1986, P SYMP PURE MATH, V44, P379