ON THE DETERMINANT OF ELLIPTIC DIFFERENTIAL AND FINITE-DIFFERENCE OPERATORS IN VECTOR-BUNDLES OVER S1

被引:38
作者
BURGHELEA, D
FRIEDLANDER, L
KAPPELER, T
机构
[1] UNIV CALIF LOS ANGELES,DEPT MATH,LOS ANGELES,CA 90024
[2] BROWN UNIV,DEPT MATH,PROVIDENCE,RI 02912
关键词
D O I
10.1007/BF02099666
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For an elliptic differential operator A over S1, A = [GRAPHICS] A(k)(x)D(k), with A(k)(x) in END (C(r)) and theta as a principal angle, the zeta-regularized determinant Det-theta A is computed in terms of the monodromy map P(A), associated to A and some invariant expressed in terms of A(n) and A(n-1). A similar formula holds for finite difference operators. A number of applications and implications are given. In particular we present a formula for the signature of A when A is self adjoint and show that the determinant of A is the limit of a sequence of computable expressions involving determinants of difference approximation of A.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 15 条
[1]  
[Anonymous], 1998, ORDINARY DIFFERENTIA
[2]  
[Anonymous], 1966, PERTURBATION THEORY
[3]  
ATIYAH M, 1973, B LOND MATH SOC, V55, P229
[4]   PRODUCT FORMULAS FOR EIGENVALUES OF A CLASS OF BOUNDARY-VALUE PROBLEMS [J].
DREYFUS, T ;
DYM, H .
DUKE MATHEMATICAL JOURNAL, 1978, 45 (01) :15-37
[5]   FUNCTIONAL DETERMINANTS AND GEOMETRY [J].
FORMAN, R .
INVENTIONES MATHEMATICAE, 1987, 88 (03) :447-493
[6]  
Friedlander L., 1989, THESIS MIT
[7]  
GILKEY P, TEUBNER TEXTE MATH, V17, P49
[8]   A NEW PROOF OF WEYL FORMULA ON THE ASYMPTOTIC-DISTRIBUTION OF EIGENVALUES [J].
GUILLEMIN, V .
ADVANCES IN MATHEMATICS, 1985, 55 (02) :131-160
[9]  
HILLE E, 1969, LECTURES ORDINARY DI
[10]  
NAIMARK MA, 1967, LINEAR DIFFERENTIA 1