EINSTEIN-METRICS ON S3-BUNDLE, R3-BUNDLE AND R4-BUNDLE

被引:207
作者
GIBBONS, GW
PAGE, DN
POPE, CN
机构
[1] PENN STATE UNIV,DEPT PHYS,UNIVERSITY PK,PA 16802
[2] TEXAS A&M UNIV SYST,DEPT PHYS,CTR THEORET PHYS,COLLEGE STN,TX 77843
关键词
D O I
10.1007/BF02104500
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting from a 4 n-dimensional quaternionic Kähler base space, we construct metrics of cohomogeneity one in (4 n+3) dimensions whose level surfaces are the S2 bundle space of almost complex structures on the base manifold. We derive the conditions on the metric functions that follow from imposing the Einstein equation, and obtain solutions both for compact and non-compact (4 n+3)-dimensional spaces. Included in the non-compact solutions are two Ricci-flat 7-dimensional metrics with G2 holonomy. We also discuss two other Ricci-flat solutions, one on the R4 bundle over S3 and the other on an R4 bundle over S4. These have G2 and Spin(7) holonomy respectively. © 1990 Springer-Verlag.
引用
收藏
页码:529 / 553
页数:25
相关论文
共 29 条
[1]  
Alekseevski D. V., 1968, FUNNKCIONAL ANAL PRI, V2, P1
[2]  
Berard-Bergery L., 1982, I E CARTAN, V6, P1
[3]  
Berger M., 1955, B SOC MATH FRANCE, V83, P279
[4]  
BONAN E, 1966, CR ACAD SCI A MATH, V262, P127
[5]  
Bryant R., PREPRINT
[6]   METRICS WITH EXCEPTIONAL HOLONOMY [J].
BRYANT, RL .
ANNALS OF MATHEMATICS, 1987, 126 (03) :525-576
[7]  
Cheeger J, 1971, J DIFFERENTIAL GEOME, V6, P119
[8]  
DEWITT BS, 1969, RELATIVITY
[9]  
GIBBONS G, 1981, SUPERSPACE SUPERGRAV
[10]   CLASSIFICATION OF GRAVITATIONAL INSTANTON SYMMETRIES [J].
GIBBONS, GW ;
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 66 (03) :291-310