Alpha Power Inverted Exponential Distribution: Properties and Application

被引:0
作者
Unal, Ceren [1 ]
Cakmakyapan, Selen [2 ]
Ozel, Gamze [1 ]
机构
[1] Hacettepe Univ, Dept Stat, TR-06800 Ankara, Turkey
[2] Istanbul Medeniyet Univ, Dept Stat, Istanbul, Turkey
来源
GAZI UNIVERSITY JOURNAL OF SCIENCE | 2018年 / 31卷 / 03期
关键词
Inverted Exponential; Distribution; Quantile Function; Maximum Likelihood; Estimation;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we introduce a new distribution based on the inverted exponential distribution called as "Alpha Power Inverted Exponential" distribution. Some of the statistical properties are provided such as hazard rate function, quantile function, skewness, kurtosis, and order statistics. Model parameters are obtained by the maximum likelihood. We prove empirically importance and flexibility of the new distribution in modeling with real data applications.
引用
收藏
页码:954 / 965
页数:12
相关论文
共 23 条
[1]   Reliability estimation of generalized inverted exponential distribution [J].
Abouammoh, A. M. ;
Alshingiti, Arwa M. .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2009, 79 (11) :1301-1315
[2]  
Adejumo O, 2014, INT J ADV STAT PROBA, V3, P1
[3]  
Dey S., 2017, ANN DATA SCI, V4, P31, DOI [10.1007/s40745-016-0094-8, DOI 10.1007/S40745-016-0094-8]
[4]  
Dey S., 2007, DATA SCI J, V6, P107, DOI [10.2481/dsj.6.107, DOI 10.2481/DSJ.6.107]
[5]   A New Extension of Generalized Exponential Distribution with Application to Ozone Data [J].
Dey, Sanku ;
Alzaatreh, Ayman ;
Zhang, Chunfang ;
Kumar, Devendra .
OZONE-SCIENCE & ENGINEERING, 2017, 39 (04) :273-285
[7]  
Isik H., 2017, INT J MATH STAT, V18, P61
[8]   RELIABILITY-ANALYSIS OF CNC MACHINE-TOOLS [J].
KELLER, AZ ;
KAMATH, ARR ;
PERERA, UD .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 1982, 3 (06) :449-473
[9]  
Kenney J. F., 1939, MATH STAT 1
[10]   Methods for generating families of univariate continuous distributions in the recent decades [J].
Lee, Carl ;
Famoye, Felix ;
Alzaatreh, Ayman Y. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2013, 5 (03) :219-238