LP ESTIMATES ON ITERATED STOCHASTIC INTEGRALS

被引:49
作者
CARLEN, E [1 ]
KREE, P [1 ]
机构
[1] UNIV PARIS 06,DEPT MATH,F-75252 PARIS 05,FRANCE
关键词
LP ESTIMATES; ITERATED STOCHASTIC INTEGRAL; LP CONVERGENCE OF NEUMANN SERIES; EXPONENTIAL MARTINGALES; BURKHOLDER-DAVIS-GUNDY INEQUALITIES;
D O I
10.1214/aop/1176990549
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a continuous martingale M, let <M, M> denote the increasing process. Let I0, I1,... denote the iterated stochastic integrals of M. We prove the inequalities of Burkholder-Davis-Gundy type, [GRAPHICS] where ln A(p,n) approximately ln B(p,n) approximately -(n/2)ln n as n --> infinity. Our proof requires the sharp constant b(p) in Burkholder-Davis-Gundy inequalities parallel-to M parallel-to p less-than-or-equal-to b(p) parallel-to <M, M>1/2 parallel-to p. In the Appendix we prove sup(p) greater-than-or-equal-to 1(b(p)/ square-root p) = 2. We apply our inequality to the study of the L(p) convergence of the Neuman series SIGMA-I(n)(t) for exponential martingales.
引用
收藏
页码:354 / 368
页数:15
相关论文
共 10 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCTIONS
[2]   SEMI-MARTINGALE INEQUALITIES VIA THE GARSIA-RODEMICH-RUMSEY LEMMA, AND APPLICATIONS TO LOCAL-TIMES [J].
BARLOW, MT ;
YOR, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 49 (02) :198-229
[3]   LP NORMS OF STOCHASTIC INTEGRALS AND OTHER MARTINGALES [J].
DAVIS, B .
DUKE MATHEMATICAL JOURNAL, 1976, 43 (04) :697-704
[4]   SOME APPLICATIONS OF FORMULA OF VARIABLE CHANGES TO SEMIMARTINGALES [J].
DOLEANSDADE, C .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1970, 16 (03) :181-+
[5]  
Nelson, 1973, J FUNCT ANAL, V12, P221
[6]  
NELSON E, 1988, LECTURE NOTES MATH, V1362
[7]  
Novikov A. A, 1973, LECT NOTES MATH, V330, P333
[8]  
Portenko N. I., 1974, Theory of Probability and Its Applications, V19, P552, DOI 10.1137/1119061
[9]   ORTHOGONAL FUNCTIONALS OF INDEPENDENT-INCREMENT PROCESSES [J].
SEGALL, A ;
KAILATH, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (03) :287-298