METHOD OF MOMENTS AND THE USE OF MULTIPOLE EXPANSION

被引:0
|
作者
ANDERSSON, T
机构
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In electromagnetic boundary value problems integral equations involving the free space Green function for the Helmholtz equation often occur. Using the method of moments to numerically solve such an equation a matrix equation is obtained. The entries of the matrix are given as multidimensional integrals which in general have to be calculated numerically. This paper presents an efficient method to approximate the main Part of these integrals. The free space Green function is expanded in scalar spherical wave functions. The translation properties of these wave functions then imply that the matrix elements can be expressed as a series of multipole moments. The method is illustrated by an implementation in the static case and the computation of the capacitance of a square plate. Basis functions with the correct edge and corner behaviour are used. The calculations of the multipole moments are done analytically. Numerical results using the point-matching and Galerkin's method are presented.
引用
收藏
页码:1237 / 1257
页数:21
相关论文
共 50 条
  • [1] Multipole moments from the partition–expansion method
    Rafael López
    Guillermo Ramírez
    Julio Fernández
    Ignacio Ema
    Jaime Fernández Rico
    Theoretical Chemistry Accounts, 2013, 132
  • [2] Multipole moments from the partition-expansion method
    Lopez, Rafael
    Ramirez, Guillermo
    Fernandez, Julio
    Ema, Ignacio
    Fernandez Rico, Jaime
    THEORETICAL CHEMISTRY ACCOUNTS, 2013, 132 (12) : 1 - 10
  • [3] Legendre polynomial expansion method for evaluating multipole moments of current density in toroidal devices
    Seo, SH
    Kim, J
    Huh, SH
    Choe, W
    Chang, HY
    Jeong, SH
    PHYSICS OF PLASMAS, 2000, 7 (05) : 1487 - 1493
  • [4] ON THE CONVERGENCE OF THE MULTIPOLE EXPANSION METHOD
    Fitzpatrick, Brian
    De Sena, Enzo
    van Waterschoot, Toon
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (05) : 2473 - 2499
  • [5] Virtual sound source rendering using a multipole-expansion and method-of-moments approach
    Hannemann, Jens
    Donohue, Kevin D.
    JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 2008, 56 (06): : 473 - 481
  • [6] Multipole Moments in the Effective Fragment Potential Method
    Bertoni, Colleen
    Slipchenko, Lyudmila V.
    Misquitta, Alston J.
    Gordon, Mark S.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2017, 121 (09): : 2056 - 2067
  • [7] Principal moments of a multipole expansion to quantify the magnetic nanoparticle distributions in arteries
    Wiekhorst, F.
    Haberkorn, W.
    Steinhoff, U.
    Lyer, S.
    Alexiou, C.
    Baer, M.
    Trahms, L.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2012, 57 : 751 - 754
  • [8] Multipole moments using extended coupled cluster method
    Joshi, Sayali P.
    Vaval, Nayana
    CHEMICAL PHYSICS LETTERS, 2013, 568 : 170 - 175
  • [9] METHOD OF CALCULATION OF MULTIPOLE MOMENTS OF STRUCTURAL DEFECTS IN METALS
    LACHOWSKI, J
    RADOWICZ, A
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1977, 25 (10): : 839 - 844
  • [10] USE OF THE IRREDUCIBLE TENSOR EXPANSION FOR THE MULTIPOLE INTERACTION
    BERMAN, PR
    PHYSICAL REVIEW A, 1984, 29 (02): : 957 - 957