Ball-milling fabrication of n-p heterojunctions Bi4O5Br2/alpha-MnS with strengthened photocatalytic removal of bisphenol A in a Z-Scheme model

被引:0
|
作者
Chang, Fei [1 ]
Zhao, Shanshan [1 ]
Lei, Yibo [1 ]
Peng, Shijie [1 ]
Liu, Deng-guo [2 ]
Kong, Yuan [3 ,4 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Environm & Architecture, Shanghai 200093, Peoples R China
[2] Shanghai Environm Monitoring Ctr, Shanghai 200235, Peoples R China
[3] Univ Sci & Technol China, Microscale & Synerget Innovat Ctr Quantum Informat, Ctr Excellence Nanosci, Hefei Natl Lab Phys Sci, Hefei 230026, Peoples R China
[4] Univ Sci & Technol China, Anhui Higher Educ Inst, Dept Chem Phys, Key Lab Surface & Interface Chem & Energy Catalysi, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
-MnS; n-p heterojunctions; Bisphenol A; Photocatalytic; Mechanism;
D O I
暂无
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this investigation, alpha-MnS with a large magnetic moment was typically selected to modify Bi4O5Br2 to produce a train of binary n-p heterojunction composites Bi4O5Br2/alpha-MnS (BMS) through a facile mechanical ball-milling manner. These achieved composites were subsequently subjected to physicochemical properties analyses. It was confirmed that both expected components were present and integrated into heterojunction structures. An endocrine disruptor bisphenol A (BPA) was typically selected as a target contaminant to estimate photocatalytic degradation efficiency under visible light. Under the identical condition, composites BMS exhibited obviously improved degradation efficiencies. Notably, the best catalog, composite BMS0.05, displayed the best catalytic outcome with an apparent reaction rate constant of 2.67 times that of Bi4O5Br2, primarily ascribed to the strengthened visible-light absorption, suitable phase composition, and boosted generation of reactive radicals caused by efficient carries redistribution and segregation along the appropriate band alignment. In addition, some reaction parameters were varied to optimize such a photocatalytic system. Moreover, degradation path-ways were speculated through intermediates detection. Eventually, a rational Z-scheme photocatalysis mecha-nism was proposed in the light of capture experiments and band structure estimation.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Ball-milling fabrication of n-p heterojunctions Bi4O5Br2/α-MnS with strengthened photocatalytic removal of bisphenol A in a Z-Scheme model
    Chang, Fei
    Zhao, Shanshan
    Lei, Yibo
    Peng, Shijie
    Liu, Deng-guo
    Kong, Yuan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 304
  • [2] Strengthened photocatalytic removal of bisphenol A under visible light by magnetic ternary heterojunctions Bi4O5Br2/Bi4O5I2/Fe3O4
    Chang, Fei
    Wang, Xiaomeng
    Li, Sushi
    Chen, Hongyu
    Wang, Yuqing
    Liu, Deng-guo
    Journal of Alloys and Compounds, 2022, 908
  • [3] Fabrication of a Z-scheme AgBr/Bi4O5Br2 nanocomposite and its high efficiency in photocatalytic N2 fixation and dye degradation
    Chen, Yijing
    Zhao, Chunran
    Ma, Sanan
    Xing, Pingxing
    Hu, Xin
    Wu, Ying
    He, Yiming
    INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (11) : 3083 - 3092
  • [4] Strengthened photocatalytic removal of bisphenol A under visible light by magnetic ternary heterojunctions Bi4O5Br2/Bi4O5I2/Fe3O4
    Chang, Fei
    Wang, Xiaomeng
    Li, Sushi
    Chen, Hongyu
    Wang, Yuqing
    Liu, Deng-guo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 908
  • [5] Enhanced photocatalytic degradation of oxytetracycline by Z-scheme heterostructure ZIF-8/Bi4O5Br2 4 O 5 Br 2
    Yang, Yajun
    Luo, Qingmin
    Li, Yafei
    Cui, Shihai
    Zhao, Chuanfeng
    Yang, Jing
    APPLIED CATALYSIS A-GENERAL, 2024, 681
  • [6] Strengthened photocatalytic removal of bisphenol a by robust 3D hierarchical n-p heterojunctions Bi4O5Br2-MnO2 via boosting oxidative radicals generation
    Chang, Fei
    Yan, Wenjing
    Wang, Xiaomeng
    Peng, Shijie
    Li, Sushi
    Hu, Xuefeng
    CHEMICAL ENGINEERING JOURNAL, 2022, 428
  • [7] A novel Z-scheme CdS/Bi4O5Br2 heterostructure with mechanism analysis: Enhanced photocatalytic performance
    Cao, Wang
    Jiang, Caiyun
    Chen, Chen
    Zhou, HaiFei
    Wang, Yuping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 861 (861)
  • [8] Construction of novel Z-scheme CDs/Bi4O5Br2/ATP heterojunction for photocatalytic degradation of ciprofloxacin
    Lu, Jing
    Zhang, Yaqian
    Wang, Bowen
    Zhang, Fenge
    INORGANIC CHEMISTRY COMMUNICATIONS, 2023, 153
  • [9] Boosted photocatalytic NO removal performance by S-scheme hierarchical composites WO3/Bi4O5Br2 prepared through a facile ball-milling protocol
    Chang, Fei
    Li, Sushi
    Shi, Zhuoli
    Qi, Yingfei
    Liu, Deng-guo
    Liu, Xiaoqi
    Chen, Shengwen
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 278
  • [10] Z-scheme Bi4O5Br2/NH2-MIL-125(Ti) heterojunctions enable exceptional visible photocatalytic degradation of organic pollutant
    Huang, Feng
    Humayun, Muhammad
    Li, Gang
    Fan, Ting-Ting
    Wang, Wen-Lin
    Cao, Yu-Lin
    Nikiforov, Anton
    Wang, Chun-Dong
    Wang, Jing
    RARE METALS, 2024, 43 (07) : 3161 - 3172