Stimulation of the activity of protein kinase C by pretreatment of cells with phorbol esters was tested for its ability to inhibit signaling by four members of the insulin receptor family, including the human insulin and insulin-like growth factor-I receptors, the human insulin receptor-related receptor, and the Drosophila insulin receptor. Activation of overexpressed protein kinase C alpha resulted in a subsequent inhibition of the ligand-stimulated increase in antiphosphotyrosine-precipitable phosphatidylinositol 3-kinase mediated by the kinase domains of all four receptors. This inhibition varied from 97% for the insulin receptor-related receptor to 65% for the Drosophila insulin receptor. In addition, the activation of protein kinase C alpha inhibited the in situ ligand-stimulated increase in tyrosine phosphorylation of the GTPase-activating protein-associated p60 protein as well as Shc mediated by these receptors. The mechanism for this inhibition was further studied in the case of the insulin-like growth factor-I receptor. Although the in situ phosphorylation of insulin-receptor substrate-1 and p60 by this receptor was inhibited by prior stimulation of protein kinase C alpha, the in vitro tyrosine phosphorylation of these two substrates by this receptor was not decreased by prior stimulation of the protein kinase C alpha in the cells that served as a source of the substrates. Finally, the insulin-like growth factor-I-stimulated increase in cell proliferation was found to be inhibited by prior activation of protein kinase C alpha. These results indicate that the ability of activated protein kinase C alpha to antagonize signaling by the human insulin receptor is shared by the other members of the insulin receptor family despite their considerable differences in amino acid sequence. Moreover, the present study shows that this antagonism is exerted at a very early step, the initial tyrosine phosphorylation of three distinct endogenous substrates. Finally, the present study indicates that this inhibition is not caused by an increased Ser/Thr phosphorylation of these two substrates.