MONOPOLES AND FOUR-MANIFOLDS

被引:4
作者
Witten, Edward [1 ]
机构
[1] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recent developments in the understanding of N = 2 super-symmetric Yang-Mills theory in four dimensions suggest a new point of view about Donaldson theory of four manifolds: instead of defining four-manifold invariants by counting SU(2) instantons, one can define equivalent four-manifold invariants by counting solutions of a non-linear equation with an abelian gauge group. This is a "dual" equation in which the gauge group is the dual of the maximal torus of SU(2). The new viewpoint suggests many new results about the Donaldson invariants.
引用
收藏
页码:769 / 796
页数:28
相关论文
共 50 条
[21]   Four-manifolds of large negative deficiency [J].
Livingston, C .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2005, 138 :107-115
[22]   On the stable classification of spin four-manifolds [J].
Spaggiari, F .
OSAKA JOURNAL OF MATHEMATICS, 2003, 40 (04) :835-843
[23]   HYPERBOLIC FOUR-MANIFOLDS WITH ONE CUSP [J].
Kolpakov, Alexander ;
Martelli, Bruno .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (06) :1903-1933
[24]   Complex structures on Riemannian four-manifolds [J].
Massimiliano Pontecorvo .
Mathematische Annalen, 1997, 309 :159-177
[25]   ROBUST FOUR-MANIFOLDS AND ROBUST EMBEDDINGS [J].
Krushkal, Vyacheslav S. .
PACIFIC JOURNAL OF MATHEMATICS, 2010, 248 (01) :191-202
[26]   Four-manifolds with positive isotropic curvature [J].
Chen, Bing-Long ;
Huang, Xian-Tao .
FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (05) :1123-1149
[27]   FOUR-MANIFOLDS WITH POSITIVE YAMABE CONSTANT [J].
Fu, Hai-Ping .
PACIFIC JOURNAL OF MATHEMATICS, 2018, 296 (01) :79-104
[28]   Twisted index on hyperbolic four-manifolds [J].
Daniele Iannotti ;
Antonio Pittelli .
Letters in Mathematical Physics, 114
[29]   Four-manifolds with positive isotropic curvature [J].
Bing-Long Chen ;
Xian-Tao Huang .
Frontiers of Mathematics in China, 2016, 11 :1123-1149
[30]   Four-manifolds with surface fundamental groups [J].
Cavicchioli, A ;
Hegenbarth, F ;
Repovs, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (10) :4007-4019