INTEGRABILITY OF THE YANG-MILLS HAMILTONIAN SYSTEM

被引:19
作者
KASPERCZUK, S
机构
[1] Institute of Physics, Pedagogical University, Zielona Góra, Pl 65069
关键词
HAMILTONIAN SYSTEMS; PAINLEVE TEST; INTEGRABILITY;
D O I
10.1007/BF00692012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper considers the integrability of generalized Yang-Mills system with the Hamiltonian H(a) (p, q) = 1/2 (p2(1) + p2(2) + a1q1(2) + a2q2(2)) + 1/4q1(4) + 1/4a3q2(4) + 1/2a4q1(2)q2(2). We prove that the system is integrable for the cases: (A) a1 = a2, a3 = a4 = 1; (B) a1 = a2, a3 = 1, a4 = 3; (C) a1 = a2/4, a3 = 16, a4 = 6. Our main result is the presentation of these integrals. Only for cases A and B does the Yang-Mills Hamiltonian possess the Painleve property. Therefore the Painleve test does not take account of the integrability for the case C.
引用
收藏
页码:387 / 391
页数:5
相关论文
共 14 条
[1]  
Abraham R., Marsden J., Foundations of Mechanics, (1978)
[2]  
Arnold V.I., Mathematical Methods of Classical Mechanics, (1978)
[3]  
Bountis T., Segur H., Vivaldi F., Integrable Hamiltonian Systems and the Painlevé Property, Phys. Rev., 25 A, pp. 1257-1264, (1982)
[4]  
Dorizzi B., Grammaticos B., Ramani A., A New Class of Integrable Systems, J. Math. Phys., 24, pp. 2282-2288, (1983)
[5]  
Ercolani N., Siggia E.D., Painlevé Property and Integrability, Phys. Lett., 119 A, pp. 112-116, (1986)
[6]  
Fridberg R., Lee T.D., Sirlin A., Class of Scalar-Field Solutions in Three Space Dimensions, Phys. Rev., 13 D, pp. 2739-2761, (1976)
[7]  
Grammaticos B., Dorizzi B., Padjen R., Painlevé Property and Integrals of Motion for the Henon-Heiles System, Phys. Lett., 89 A, pp. 111-113, (1982)
[8]  
Kowalevski S., Sur le Problème de la Rotation d'un Corps Solide Autour d'un Point Fixe, Acta Math., 12, pp. 177-232, (1889)
[9]  
Kowalevski S., Sur une Propriété du Système d'Équations Différentielles qui Définit la Rotation d'un Corps Solide Autour d'un Point Fixe, Acta Math., 14, pp. 81-93, (1890)
[10]  
Newell A.C., Tabor M., Zeng Y.B., A Unified Approach to Painlevé Expressions, Physica D, 29, pp. 1-68, (1987)