Simultaneous determination of time-dependent coefficients and heat source

被引:9
作者
Hussein, M. S. [1 ,2 ]
Lesnic, D. [1 ]
机构
[1] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Baghdad, Coll Sci, Dept Math, Baghdad, Iraq
关键词
Coefficient identification; finite-difference method; heat equation; inverse problem; nonlinear minimization; Tikhonov regularization;
D O I
10.1080/15502287.2016.1231241
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This article presents a numerical solution to the inverse problems of simultaneous determination of the time-dependent coefficients and the source term in the parabolic heat equation subject to over-specified conditions of integral type. The ill-posed problems are numerically discretized using the finite-difference method. The resulting system of nonlinear equations is solved numerically using the MATLAB toolbox routine lsqnonlin applied to minimizing the nonlinear Tikhonov regularization functional subject to simple physical bounds on the variables. Numerical examples are presented to illustrate the accuracy and stability of the solution.
引用
收藏
页码:401 / 411
页数:11
相关论文
共 50 条
[31]   Determination of a time-dependent heat transfer coefficient in a nonlinear inverse heat conduction problem [J].
Slodicka, M. ;
Lesnic, D. ;
Onyango, T. T. M. .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2010, 18 (01) :65-81
[32]   A note on the stability of a time-dependent source identification problem [J].
Ashyralyev, Allaberen ;
Sazaklioglu, Ali Ugur .
INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2014), 2014, 1611 :186-189
[33]   A shifted Chebyshev-Tau method for finding a time-dependent heat source in heat equation [J].
Akbarpour, Samaneh ;
Shidfar, Abdollah ;
Najafi, Hashem Saberi .
COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2020, 8 (01) :1-13
[34]   INVERSE PROBLEMS OF IDENTIFYING THE TIME-DEPENDENT SOURCE COEFFICIENT FOR SUBELLIPTIC HEAT EQUATIONS [J].
Ismailov, Mansur i. ;
Ozawa, Tohru ;
Suragan, Durvudkhan .
INVERSE PROBLEMS AND IMAGING, 2024, 18 (04) :813-823
[35]   Identification of a time-dependent source term in nonlinear hyperbolic or parabolic heat equation [J].
Borukhov, V. T. ;
Zayats, G. M. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 91 :1106-1113
[36]   STABILITY OF THE DETERMINATION OF A TIME-DEPENDENT COEFFICIENT IN PARABOLIC EQUATIONS [J].
Choulli, Mourad ;
Kian, Yavar .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2013, 3 (02) :143-160
[37]   Determination of a time-dependent diffusivity from nonlocal conditions [J].
Lesnic, D. ;
Yousefi, S. A. ;
Ivanchov, M. .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2013, 41 (1-2) :301-320
[38]   Simultaneous determination of unknown coefficients in a parabolic equation [J].
Fatullayev, Afet Golayoglu ;
Gasilov, Nizami ;
Yusubov, Ismihan .
APPLICABLE ANALYSIS, 2008, 87 (10-11) :1167-1177
[39]   Backward semi-linear parabolic equations with time-dependent coefficients and local Lipschitz source [J].
Dinh Nho Hao ;
Nguyen Van Duc ;
Nguyen Van Thang .
INVERSE PROBLEMS, 2018, 34 (05)
[40]   TIME-DEPENDENT SINGULARITIES IN THE HEAT EQUATION [J].
Takahashi, Jin ;
Yanagida, Eiji .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (03) :969-979