FAST PRECONDITIONED CONJUGATE-GRADIENT ALGORITHMS FOR WIENER-HOPF INTEGRAL-EQUATIONS

被引:25
作者
GOHBERG, I
HANKE, M
KOLTRACHT, I
机构
[1] UNIV CONNECTICUT,DEPT MATH,STORRS,CT 06269
[2] UNIV KARLSRUHE,INST PRAKT MATH,W-7500 KARLSRUHE,GERMANY
关键词
WIENER-HOPF EQUATION; CIRCULANT PRECONDITIONER; PERIODIC KERNEL FUNCTION; CONJUGATE GRADIENTS ALGORITHM;
D O I
10.1137/0731023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the authors study circulant approximations of finite sections of a Wiener-Hopf integral equation on the half-line. Such circulant, operators are defined by periodic kernel functions. They approximate finite sections of the Wiener Hopf operator within a sum of a small operator and an operator with fixed finite rank. Constructions are given of two such circulant operators and their use as preconditioners for the Conjugate Gradients algorithm is explained. Numerical examples are included to illustrate the results.
引用
收藏
页码:429 / 443
页数:15
相关论文
共 18 条
[1]  
Axelsson O, 1984, COMPUTER SCI APPL MA
[2]   CIRCULANT PRECONDITIONERS CONSTRUCTED FROM KERNELS [J].
CHAN, RH ;
YEUNG, MC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (04) :1093-1103
[3]   THE CIRCULANT OPERATOR IN THE BANACH ALGEBRA OF MATRICES [J].
CHAN, RH ;
JIN, XQ ;
YEUNG, MC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 149 :41-53
[4]  
CHAN RH, 1992, MATH COMPUT, V58, P233
[5]   AN OPTIMAL CIRCULANT PRECONDITIONER FOR TOEPLITZ-SYSTEMS [J].
CHAN, TF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (04) :766-771
[6]  
Chatelin F., 1983, SPECTRAL APPROXIMATI
[7]  
Davis PJ, 1979, CIRCULANT MATRICES
[8]   2ND-ORDER PARALLEL ALGORITHMS FOR PIECEWISE SMOOTH DISPLACEMENT KERNELS [J].
GOHBERG, I ;
KOLTRACHT, I ;
LANCASTER, P .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1992, 15 (01) :16-29
[9]  
Gohberg I., 1980, BASIC OPERATOR THEOR
[10]  
Gohberg I.C., 1974, TRANSLATIONS MATH MO, V41