IMPROVED ACCURACY IN FINITE-ELEMENT ANALYSIS OF BIOTS CONSOLIDATION PROBLEM

被引:134
作者
MURAD, MA
LOULA, AFD
机构
[1] Laboratório Nacional de Computação Científica, LNCC, CNPq, 22290 Rio de Janeiro
关键词
D O I
10.1016/0045-7825(92)90193-N
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Numerical analysis and error estimates of finite element approximations of Biot's consolidation problem are presented. Initially different orders of interpolation are employed, leading to lower orders of convergence for the pore pressure compared to the displacements of the porous medium. Lower accuracy also occurs in the approximation of the effective stress tensor, whether it is calculated directly from the constitutive equation, or through a primal mixed stress formulation. To improve the rates of convergence of the pore pressure and effective stresses, a sequential Galerkin Petrov-Galerkin post-processing technique is proposed.
引用
收藏
页码:359 / 382
页数:24
相关论文
共 30 条
[1]  
[Anonymous], 1942, THEORETICAL SOIL MEC
[2]  
Arnold D.N., 1984, JAPAN J APPL MATH, V1, P347
[3]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[4]   ERROR ESTIMATES FOR FINITE-ELEMENT METHOD SOLUTION OF THE STOKES PROBLEM IN THE PRIMITIVE VARIABLES [J].
BERCOVIER, M ;
PIRONNEAU, O .
NUMERISCHE MATHEMATIK, 1979, 33 (02) :211-224
[5]  
Biot M. A., 1956, ASME J APPL MECH MAR, V23, P91
[6]  
Biot M. A., 1957, J APPL MECH, V79, P594
[7]   THEORY OF ELASTICITY AND CONSOLIDATION FOR A POROUS ANISOTROPIC SOLID [J].
BIOT, MA .
JOURNAL OF APPLIED PHYSICS, 1955, 26 (02) :182-185
[8]   General theory of three-dimensional consolidation [J].
Biot, MA .
JOURNAL OF APPLIED PHYSICS, 1941, 12 (02) :155-164
[9]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[10]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO