Auto-adaptative Robot-aided Therapy based in 3D Virtual Tasks controlled by a Supervised and Dynamic Neuro-Fuzzy System

被引:5
作者
Lledo, L. D. [1 ]
Bertomeu, A. [1 ]
Diez, J. [1 ]
Badesa, F. J. [1 ]
Morales, R. [1 ]
Sabater, J. M. [1 ]
Garcia-Aracil, N. [2 ]
机构
[1] Miguel Hernandez Univ Elche, Elche, Spain
[2] Miguel Hernandez Univ Elche, Control & Syst Engn, Elche, Spain
关键词
Rehabilitation robotics; Physiological state; Neural networks; Fuzzy logic system; Virtual reality; Collision detection;
D O I
10.9781/ijimai.2015.328
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an application formed by a classification method based on the architecture of ART neural network (Adaptive Resonance Theory) and the Fuzzy Set Theory to classify physiological reactions in order to automatically and dynamically adapt a robot-assisted rehabilitation therapy to the patient needs, using a three-dimensional task in a virtual reality system. Firstly, the mathematical and structural model of the neuro-fuzzy classification method is described together with the signal and training data acquisition. Then, the virtual designed task with physics behavior and its development procedure are explained. Finally, the general architecture of the experimentation for the auto-adaptive therapy is presented using the classification method with the virtual reality exercise.
引用
收藏
页码:63 / 68
页数:6
相关论文
共 15 条
[1]  
Badesa F. J., 2012, IEEETRANSACTIONS S C, V42
[2]   Auto-adaptive robot-aided therapy using machine learning techniques [J].
Badesa, Franciso J. ;
Morales, Ricardo ;
Garcia-Aracil, Nicolas ;
Sabater, J. M. ;
Casals, Alicia ;
Zollo, Loredana .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 116 (02) :123-130
[3]   Improving Motor Imagery Classification With a New BCI Design Using Neuro-Fuzzy S-dFasArt [J].
Cano-Izquierdo, Jose-Manuel ;
Ibarrola, Julio ;
Almonacid, Miguel .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2012, 20 (01) :2-7
[4]   dFasArt: Dynamic neural processing in FasArt model [J].
Cano-Izquierdo, Jose-Manuel ;
Almonacid, Miguel ;
Pinzolas, Miguel ;
Ibarrola, Julio .
NEURAL NETWORKS, 2009, 22 (04) :479-487
[5]   FUZZY ARTMAP - A NEURAL NETWORK ARCHITECTURE FOR INCREMENTAL SUPERVISED LEARNING OF ANALOG MULTIDIMENSIONAL MAPS [J].
CARPENTER, GA ;
GROSSBERG, S ;
MARKUZON, N ;
REYNOLDS, JH ;
ROSEN, DB .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1992, 3 (05) :698-713
[6]   Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training [J].
Duschau-Wicke, Alexander ;
Caprez, Andrea ;
Riener, Robert .
JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2010, 7
[7]   Dynamic, ecological, accessible and 3D Virtual Worlds-based Libraries using OpenSim and Sloodle along with mobile location and NFC for checking in [J].
Gonzalez Crespo, Ruben ;
Rios Aguilar, Sergio ;
Ferro Escobar, Roberto ;
Torres, Nicolas .
INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2012, 1 (07) :62-69
[8]   Learning from noisy information in FasArt and FasBack neuro-fuzzy systems [J].
Izquierdo, JMC ;
Dimitriadis, YA ;
Sánchez, EG ;
Coronado, JL .
NEURAL NETWORKS, 2001, 14 (4-5) :407-425
[9]  
Laver KE, 2011, COCHRANE DB SYST REV, DOI [10.1002/14651858.CD008349.pub2, 10.1002/14651858.CD008349.pub3, 10.1002/14651858.CD008349.pub4]
[10]   Comprehensive Overview of Nursing and Interdisciplinary Rehabilitation Care of the Stroke Patient A Scientific Statement From the American Heart Association [J].
Miller, Elaine L. ;
Murray, Laura ;
Richards, Lorie ;
Zorowitz, Richard D. ;
Bakas, Tamilyn ;
Clark, Patricia ;
Billinger, Sandra A. .
STROKE, 2010, 41 (10) :2402-2448