Multiobjective Differential Evolution Algorithm using Crowding Distance for the Optimal Design of Analog Circuits

被引:0
|
作者
El Dor, Abbas [1 ]
Fakhfakh, Mourad [2 ]
Siarry, Patrick [3 ]
机构
[1] Ecole Mines Nantes, TASC, INRIA, CNRS,UMR 6241, 4 Rue Alfred Kastler, F-44300 Nantes, France
[2] Univ Sfax, ENET Com, BP 1163, Sfax 3018, Tunisia
[3] Univ Paris Est Creteil, LiSSi, EA 3956, 122 Rue Paul Armangot, F-94400 Vitry Sur Seine, France
关键词
Metaheuristics; Multiobjective optimization; MODE; NSGA-II; CMOS; Second generation current conveyor;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper details the Multiobjective Differential Evolution algorithm (MODE) using crowding distance for the sizing of analog circuits. MODE is used to compute the Pareto front of a bi-objective optimization problem, namely maximizing the high current cut-off frequency and minimizing the parasitic input resistance of a second generation current conveyor. To highlight performances of MODE, comparisons with the non-sorting genetic algorithm (NSGA-II) were performed. These comparisons show that MODE outperforms NSGA-II in terms of quality of the optimal solutions, diversity of those solutions along the Pareto front, and computing time.
引用
收藏
页码:612 / 622
页数:11
相关论文
共 50 条
  • [11] Multiobjective differential evolution algorithm based on decomposition for a type of multiobjective bilevel programming problems
    Li, Hong
    Zhang, Qingfu
    Chen, Qin
    Zhang, Li
    Jiao, Yong-Chang
    KNOWLEDGE-BASED SYSTEMS, 2016, 107 : 271 - 288
  • [12] ADEMO/D: Multiobjective optimization by an adaptive differential evolution algorithm
    Venske, Sandra M.
    Goncalves, Richard A.
    Delgado, Myriam R.
    NEUROCOMPUTING, 2014, 127 : 65 - 77
  • [13] Optimal sizing of CMOS analog circuits using gravitational search algorithm with particle swarm optimization
    S. Mallick
    R. Kar
    D. Mandal
    S. P. Ghoshal
    International Journal of Machine Learning and Cybernetics, 2017, 8 : 309 - 331
  • [14] Optimal sizing of CMOS analog circuits using gravitational search algorithm with particle swarm optimization
    Mallick, S.
    Kar, R.
    Mandal, D.
    Ghoshal, S. P.
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2017, 8 (01) : 309 - 331
  • [15] A Genetic Algorithm-Based Multiobjective Optimization for Analog Circuit Design
    Oltean, Gabriel
    Hintea, Sorin
    Sipos, Emilia
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT II, PROCEEDINGS, 2009, 5712 : 506 - 514
  • [16] An enhance multimodal multiobjective optimization genetic algorithm with special crowding distance for pulmonary hypertension feature selection
    Wang, Mingjing
    Li, Xiaoping
    Chen, Long
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
  • [17] Design of heat exchangers using a novel multiobjective free search differential evolution paradigm
    Hultmann Ayala, Helon Vicente
    Keller, Patrick
    Morais, Marcia de Fatima
    Mariani, Viviana Cocco
    Coelho, Leandro dos Santos
    Rao, Ravipudi Venkata
    APPLIED THERMAL ENGINEERING, 2016, 94 : 170 - 177
  • [18] Multiobjective Distinct Candidates Optimization (MODCO): A Cluster-Forming Differential Evolution Algorithm
    Justesen, Peter Dueholm
    Ursem, Rasmus K.
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION: 5TH INTERNATIONAL CONFERENCE, EMO 2009, 2009, 5467 : 525 - +
  • [19] Exergoeconomic analysis and optimization of a solar based multigeneration system using multiobjective differential evolution algorithm
    Rashidi, Halimeh
    Khorshidi, Jamshid
    JOURNAL OF CLEANER PRODUCTION, 2018, 170 : 978 - 990
  • [20] Efficient butterfly inspired optimization algorithm for analog circuits design
    Lberni, Abdelaziz
    Marktani, Malika Alami
    Ahaitouf, Abdelaziz
    Ahaitouf, Ali
    MICROELECTRONICS JOURNAL, 2021, 113 (113):