DUALITY BEYOND SOBER SPACES - TOPOLOGICAL-SPACES AND OBSERVATION FRAMES

被引:9
作者
BONSANGUE, MM
JACOBS, B
KOK, JN
机构
[1] CTR WISKUNDE & INFORMAT,1090 GB AMSTERDAM,NETHERLANDS
[2] UNIV UTRECHT,DEPT COMP SCI,3508 TB UTRECHT,NETHERLANDS
关键词
D O I
10.1016/0304-3975(95)00048-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce observation frames as an extension of ordinary frames. The aim is to give an abstract representation of a mapping from observable predicates to all predicates of a specific system, A full subcategory of the category of observation frames is shown to be dual to the category of J(o) topological spaces. The notions we use generalize those in the adjunction between frames and topological spaces in the sense that we generalize finite meets to infinite ones. We also give a predicate logic of observation frames with both infinite conjunctions and disjunctions, just like there is a geometric logic for (ordinary) frames with infinite disjunctions but only finite conjunctions. This theory is then applied to two situations: firstly to upper power spaces, and secondly we restrict the adjunction between the categories of topological spaces and of observation frames in order to obtain dualities for various subcategories of J(o) spaces. These involve nonsober spaces.
引用
收藏
页码:79 / 124
页数:46
相关论文
共 33 条
[1]  
Abramsky S., 1987, THESIS U LONDON
[2]  
AMBLER S, 1993, LECTURE NOTES COMPUT, V832, P18
[3]  
BONSANGUE MM, 1994, LECTURE NOTES COMPUT, V789, P822
[4]  
BONSANGUE MM, 1993, LECT NOTES COMPUTER, V711, P301
[5]  
DAY BJ, 1970, PROC CAMB PHILOS S-M, V67, P553
[6]  
Dijkstra E.W, 1990, PREDICATE CALCULUS P
[7]  
Dijkstra EW, 1976, DISCIPLINE PROGRAMMI
[8]  
Dugundji J., 1966, TOPOLOGY
[9]  
Engelking, 1989, SIGMA SER PURE MATH, V6
[10]  
Gierz G., 1980, COMPENDIUM CONTINUOU, DOI 10.1007/978-3-642-67678-9