SYMPLECTIC METHODS FOR THE NONLINEAR SCHRODINGER-EQUATION

被引:32
作者
HERBST, BM
VARADI, F
ABLOWITZ, MJ
机构
[1] UNIV CALIF LOS ANGELES,DEPT ATMOSPHER SCI,LOS ANGELES,CA 90024
[2] UNIV COLORADO,PROGRAM APPL MATH,BOULDER,CO 80309
关键词
D O I
10.1016/0378-4754(94)00024-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Various symplectic discretizations of the nonlinear Schrodinger equation are compared, including one for the integrable discretization due to Ablowitz and Ladik. The numerical experiments are performed with initial values taken near a homoclinic orbit, i.e., in a situation where integrability is crucial. It is shown that symplectic discretizations can sometimes lead to remarkable improvements, and that in even more sensitive situations some of our best numerical schemes fail.
引用
收藏
页码:353 / 369
页数:17
相关论文
共 21 条
[1]  
Ablowitz M. J., 1981, SOLITONS INVERSE SCA
[2]   ON HOMOCLINIC STRUCTURE AND NUMERICALLY INDUCED CHAOS FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
ABLOWITZ, MJ ;
HERBST, BM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (02) :339-351
[3]  
ABLOWITZ MJ, 1976, STUD APPL MATH, V55, P213
[4]  
[Anonymous], 1978, MATH METHODS CLASSIC, DOI [DOI 10.1007/978-1-4757-1693-1, 10.1007/978-1-4757-1693-1]
[5]   SYMPLECTIC INTEGRATION OF HAMILTONIAN-SYSTEMS [J].
CHANNELL, PJ ;
SCOVEL, C .
NONLINEARITY, 1990, 3 (02) :231-259
[6]   GEOMETRY OF THE MODULATIONAL INSTABILITY .3. HOMOCLINIC ORBITS FOR THE PERIODIC SINE-GORDON EQUATION [J].
ERCOLANI, N ;
FOREST, MG ;
MCLAUGHLIN, DW .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 43 (2-3) :349-384
[7]  
FENG K, 1986, J COMPUT MATH, V4, P279
[8]  
FENG K, 1987, LECTURE NOTES MATH, V1297
[9]   4TH-ORDER SYMPLECTIC INTEGRATION [J].
FOREST, E ;
RUTH, RD .
PHYSICA D, 1990, 43 (01) :105-117
[10]   EQUIVARIANT SYMPLECTIC DIFFERENCE-SCHEMES AND GENERATING-FUNCTIONS [J].
GE, Z .
PHYSICA D, 1991, 49 (03) :376-386