FAST SPECTRALLY-ACCURATE SOLUTION OF VARIABLE-COEFFICIENT ELLIPTIC PROBLEMS

被引:11
作者
STRAIN, J [1 ]
机构
[1] UNIV CALIF BERKELEY,LAWRENCE BERKELEY LAB,BERKELEY,CA 94720
关键词
ELLIPTIC SOLVERS; PRECONDITIONING; SPECTRAL METHODS;
D O I
10.2307/2160763
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A simple, efficient, spectrally-accurate numerical method for solving variable-coefficient elliptic partial differential equations in periodic geometry is described. Numerical results show that the method is efficient and accurate even for difficult problems including convection-diffusion equations. Generalizations and applications to phase field models of crystal growth are discussed.
引用
收藏
页码:843 / 850
页数:8
相关论文
共 14 条
[1]  
Briggs W L, 1987, MULTIGRID TUTORIAL
[2]   STEFAN AND HELE-SHAW TYPE MODELS AS ASYMPTOTIC LIMITS OF THE PHASE-FIELD EQUATIONS [J].
CAGINALP, G .
PHYSICAL REVIEW A, 1989, 39 (11) :5887-5896
[3]  
Canuto C., 1987, SPECTRAL METHODS FLU
[4]   USE OF FAST DIRECT METHODS FOR EFFICIENT NUMERICAL-SOLUTION OF NONSEPARABLE ELLIPTIC EQUATIONS [J].
CONCUS, P ;
GOLUB, GH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (06) :1103-1119
[5]   TSCHEBYSCHEFF PSEUDOSPECTRAL SOLUTION OF 2ND-ORDER ELLIPTIC-EQUATIONS WITH FINITE-ELEMENT PRECONDITIONING [J].
DEVILLE, M ;
MUND, E .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 60 (03) :517-533
[6]   QMR - A QUASI-MINIMAL RESIDUAL METHOD FOR NON-HERMITIAN LINEAR-SYSTEMS [J].
FREUND, RW ;
NACHTIGAL, NM .
NUMERISCHE MATHEMATIK, 1991, 60 (03) :315-339
[7]  
Gilbarg D., 1983, ELLIPTIC PARTIAL DIF
[8]  
GUILLARD H, 1990, SPECTRAL HIGH ORDER
[9]  
Hairer E., 1991, SOLVING ORDINARY DIF, DOI [10.1007/978-3-662-09947-6, DOI 10.1007/978-3-662-09947-6]
[10]  
PROSKUROWSKI W, 1978, MATH COMPUT, V32, P103