STRUCTURE OF A GLOBAL AND SEASONAL CARBON EXCHANGE MODEL FOR THE TERRESTRIAL BIOSPHERE - THE FRANKFURT BIOSPHERE MODEL (FBM)

被引:24
|
作者
KINDERMANN, J
LUDEKE, MKB
BADECK, FW
OTTO, RD
KLAUDIUS, A
HAGER, C
WURTH, G
LANG, T
DONGES, S
HABERMEHL, S
KOHLMAIER, GH
机构
[1] Institut für Physikalische und Theoretische Chemie, J. W. Goethe-Universität Frankfurt/M., Frankfurt 50, D-6000, Niederurseler Hang
来源
WATER AIR AND SOIL POLLUTION | 1993年 / 70卷 / 1-4期
关键词
D O I
10.1007/BF01105029
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Carbon exchange fluxes of terrestrial ecosystems are expected to depend on the internal dynamics of C stocks in vegetation and soils, on nutrient availability, and on the local climatic conditions / weather. The model structure which we present focuses on the internal dynamics in the living vegetation. The mathematical description is derived from two basic hypotheses: 1) vegetation tends to maximize photosynthesizing tissue, and 2) the relative amounts of C in pools with relatively short and long turnover times are given by allometric relations. The model can be calibrated for any vegetation type in a typical climate under the condition to meet mean ecological estimates of e.g. biomass and NPP. For C cycle modeling the FBM yields the net CO2 flux between the grid elements and the atmosphere in a daily resolution. It is demonstrated that simulations with a 1-degrees-x1-degrees spatial resolution reproduce the response of the time course of C fluxes to local climates.
引用
收藏
页码:675 / 684
页数:10
相关论文
共 50 条
  • [41] Global linkages between teleconnection patterns and the terrestrial biosphere
    Dahlin, Kyla M.
    Ault, Toby R.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 69 : 56 - 63
  • [42] Effect of model structure on the response of terrestrial biosphere models to CO2 and temperature increases
    Harvey, L.
    GLOBAL BIOGEOCHEMICAL CYCLES, 1989, 3 (02) : 137 - 153
  • [43] On the uncertainty of phenological responses to climate change, and implications for a terrestrial biosphere model
    Migliavacca, M.
    Sonnentag, O.
    Keenan, T. F.
    Cescatti, A.
    O'Keefe, J.
    Richardson, A. D.
    BIOGEOSCIENCES, 2012, 9 (06) : 2063 - 2083
  • [44] Carbon Flux Variability From a Relatively Simple Ecosystem Model With Assimilated Data Is Consistent With Terrestrial Biosphere Model Estimates
    Quetin, Gregory R.
    Bloom, A. Anthony
    Bowman, Kevin W.
    Konings, Alexandra G.
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (03)
  • [45] Including tropical croplands in a terrestrial biosphere model: application to West Africa
    Alexis Berg
    Benjamin Sultan
    Nathalie de Noblet-Ducoudré
    Climatic Change, 2011, 104 : 755 - 782
  • [46] Development and evaluation of an ozone deposition scheme for coupling to a terrestrial biosphere model
    Franz, Martina
    Simpson, David
    Arneth, Almut
    Zaehle, Soenke
    BIOGEOSCIENCES, 2017, 14 (01) : 45 - 71
  • [47] Including tropical croplands in a terrestrial biosphere model: application to West Africa
    Berg, Alexis
    Sultan, Benjamin
    de Noblet-Ducoudre, Nathalie
    CLIMATIC CHANGE, 2011, 104 (3-4) : 755 - 782
  • [48] A global-scale simulation of the CO2 exchange between the atmosphere and the terrestrial biosphere with a mechanistic model including stable carbon isotopes, 1953-1999
    Ito, A
    TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2003, 55 (02) : 596 - 612
  • [49] The role of the terrestrial biosphere in Holocene carbon cycle dynamics
    Beerling, DJ
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2000, 9 (05): : 421 - 429
  • [50] Constraints and enablers for increasing carbon storage in the terrestrial biosphere
    Connor J. Nolan
    Christopher B. Field
    Katharine J. Mach
    Nature Reviews Earth & Environment, 2021, 2 : 436 - 446