High-order variational time integrators for particle dynamics

被引:2
作者
Miglio, E. [1 ]
Parolini, N. [1 ]
Penati, M. [1 ]
Porcu, R. [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, MOX Modellist & Calcolo Sci, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
关键词
Variational integrators; Galerkin method; particle dynamics;
D O I
10.2478/caim-2018-0015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The general family of Galerkin variational integrators are analyzed and a complete classification of such methods is proposed. This classification is based upon the type of basis function chosen to approximate the trajectories of material points and the numerical quadrature formula used in time. This approach leads to the definition of arbitrarily high order method in time. The proposed methodology is applied to the simulation of brownout phenomena occurring in helicopter take-off and landing.
引用
收藏
页码:34 / 49
页数:16
相关论文
共 17 条
[1]  
Arnol'd V., 1989, MATH METHODS CLASSIC
[2]   Optimal coercivity inequalities in W1,p,(Ω) [J].
Auchmuty, G .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2005, 135 :915-933
[3]   GENERALIZED INF-SUP CONDITIONS FOR TSCHEBYSCHEFF SPECTRAL APPROXIMATION OF THE STOKES PROBLEM [J].
BERNARDI, C ;
CANUTO, C ;
MADAY, Y .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (06) :1237-1271
[4]  
CANUTO C, 1982, MATH COMPUT, V38, P67, DOI 10.1090/S0025-5718-1982-0637287-3
[5]  
CANUTO C, 2006, SCI COMPUTATION
[6]  
Hairer E., 2010, STRUCTURE PRESERVING, V31
[7]   Spectral variational integrators [J].
Hall, James ;
Leok, Melvin .
NUMERISCHE MATHEMATIK, 2015, 130 (04) :681-740
[8]  
Kane C, 2000, INT J NUMER METH ENG, V49, P1295, DOI 10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.3.CO
[9]  
2-N
[10]  
Landau L., 1960, COURSE THEORETICAL P, V1