NON INTEGRABILITY OF THE J(2) PROBLEM

被引:48
作者
Irigoyen, Maylis [1 ]
Simo, Carles [2 ]
机构
[1] Univ Paris 02, F-75006 Paris, France
[2] Univ Barcelona, Dept Matemat Aplicada & Anal, E-08007 Barcelona, Spain
关键词
Non integrability; second degree zonal harmonic;
D O I
10.1007/BF00692515
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the motion of a massless particle around an oblate planet, keeping only in the expression of the perturbing potential the second degree zonal harmonic. We prove the analytical non integrability of this problem, by using Ziglin's theorem and the Yoshida criterion for homogeneous potentials.
引用
收藏
页码:281 / 287
页数:7
相关论文
共 12 条
[1]   GEOMETRICAL ASPECTS OF ZIGLIN NON-INTEGRABILITY THEOREM FOR COMPLEX HAMILTONIAN-SYSTEMS [J].
CHURCHILL, RC ;
ROD, DL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 76 (01) :91-114
[2]  
Hille E., 1976, ORDINARY DIFFERENTIA
[3]  
Ince E.L., 1956, ORDINARY DIFFERENTIA
[4]  
ITO H, 1985, KODAI MATH J, V8, P120
[5]  
NAHON F, GROUPE MONODRO UNPUB
[6]  
PLEMELJ J, 1964, PROBLEM SENSE RIEMAN
[7]  
SIMO C, 1991, NATO ADV SCI I B-PHY, V272, P305
[8]  
Whittaker E. T., 2021, COURSE MODERN ANAL
[9]   A CRITERION FOR THE NON-EXISTENCE OF AN ADDITIONAL INTEGRAL IN HAMILTONIAN-SYSTEMS WITH A HOMOGENEOUS POTENTIAL [J].
YOSHIDA, H .
PHYSICA D, 1987, 29 (1-2) :128-142
[10]   NON-INTEGRABILITY OF THE 4TH-ORDER TRUNCATED TODA HAMILTONIAN [J].
YOSHIDA, H ;
RAMANI, A ;
GRAMMATICOS, B .
PHYSICA D, 1988, 30 (1-2) :151-163