PARTIAL-DIFFERENTIAL OPERATORS DEPENDING ANALYTICALLY ON A PARAMETER

被引:15
作者
MANTLIK, F [1 ]
机构
[1] UNIV DORTMUND,FACHBEREICH MATH,W-4600 DORTMUND 50,GERMANY
关键词
LINEAR DIFFERENTIAL OPERATORS; FUNDAMENTAL SOLUTIONS; ANALYTIC PARAMETER-DEPENDENCE;
D O I
10.5802/aif.1266
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P(lambda,D) = [GRAPHICS] a(alpha)(lambda)D(alpha) be a differential operator with constant coefficients a(alpha) depending analytically on a parameter lambda. Assume that the family {P(lambda,D)} is of constant strength. We investigate the equation P(lambda,D)f(lambda) = g(lambda) where g(lambda) is a given analytic function of lambda with values in some space of distributions and the solution f(lambda) is required to depend analytically on lambda, too. As a special case we obtain a regular fundamental solution of P(lambda,D) which depends analytically on lambda. This result answers a question of L. Hormander.
引用
收藏
页码:577 / 599
页数:23
相关论文
共 7 条
[1]   ON LEVI PROBLEM AND THE IMBEDDING OF REAL-ANALYTIC MANIFOLDS [J].
GRAUERT, H .
ANNALS OF MATHEMATICS, 1958, 68 (02) :460-472
[2]  
Hormander L., 1983, GRUNDLEHREN MATH WIS, V257
[3]  
Hormander L, 1983, GRUNDLEHREN MATH WIS, V256
[4]   BANACH COHERENT ANALYTIC FRECHET SHEAVES [J].
LEITERER, J .
MATHEMATISCHE NACHRICHTEN, 1978, 85 :91-109
[5]  
MANTLIK F, IN PRESS FUNDAMENTAL
[7]  
[No title captured]