A CUBIC ACTION FOR SELF-DUAL YANG-MILLS

被引:82
作者
PARKES, A
机构
[1] Theoretische Physik, ETH-Hönggerberg
关键词
D O I
10.1016/0370-2693(92)91773-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We make a change of field variables in the J formulation of self-dual Yang-Mills theory. The field equations for the resulting algebra valued field are derivable form a simple cubic action. The cubic interaction vertex is different from that considered previously from the N = 2 string, however, perturbation theory with this action shows that the only non-vanishing connected scattering amplitude is for three external particles just as for the string.
引用
收藏
页码:265 / 270
页数:6
相关论文
共 20 条
[1]   AMPLITUDES IN THE N=2 STRING [J].
BONINI, M ;
GAVA, E ;
IENGO, R .
MODERN PHYSICS LETTERS A, 1991, 6 (09) :795-803
[2]  
BRIHAYE Y, 1978, J MATH PHYS, V19, P2528, DOI 10.1063/1.523636
[3]   NON-LINEAR PARTIAL-DIFFERENTIAL EQUATIONS AND BACKLUND-TRANSFORMATIONS RELATED TO THE 4-DIMENSIONAL SELF-DUAL YANG-MILLS EQUATIONS [J].
BRUSCHI, M ;
LEVI, D ;
RAGNISCO, O .
LETTERE AL NUOVO CIMENTO, 1982, 33 (09) :263-266
[4]   ALL POSSIBLE SYMMETRIES OF S MATRIX [J].
COLEMAN, S ;
MANDULA, J .
PHYSICAL REVIEW, 1967, 159 (05) :1251-&
[5]  
DONALDSON SK, 1985, P LOND MATH SOC, V50, P1
[6]  
GIVEON A, GAUGE SYMMETRIES N 2
[7]  
KALITZIN S, 1991, PHYS LETT B, V262, P444
[8]  
LEZNOV AN, 1988, THEOR MATH PHYS, V73, P1233
[9]  
MARCUS N, 1991, TAUP192891
[10]   A KAHLER-CHERN-SIMONS THEORY AND QUANTIZATION OF INSTANTON MODULI SPACES [J].
NAIR, VP ;
SCHIFF, J .
PHYSICS LETTERS B, 1990, 246 (3-4) :423-429