GENERALIZED SCHUR COMPLEMENTS

被引:85
作者
ANDO, T
机构
[1] Division of Applied Mathematics Research Institute, Applied Electricity Hokkaido University, Sapporo
关键词
D O I
10.1016/0024-3795(79)90040-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an n×n complex matrix. For a suitable subspace M of Cn the Schur compression A M and the (generalized) Schur complement A/M are defined. If A is written in the form A= B C S T according to the decomposition Cn=M⊕M⊥ and if B is invertible, then AM= B C S SB-1C and A/M= 0 0 0 T-SB-1C· The commutativity rule for Schur complements is proved: (A/M)/N=(A)/N)/M· This unifies Crabtree and Haynsworth's quotient formula for (classical) Schur complements and Anderson's commutativity rule for shorted operators. Further, the absorption rule for Schur compressions is proved: (A/M)N=(AN)M=AM whenever M⊆N. © 1979.
引用
收藏
页码:173 / 186
页数:14
相关论文
共 7 条
[1]  
ANDERSON WM, 1975, P INT S OPERATOR THE
[2]  
ANDERSON WN, 1971, SIAM J APPL MATH, V20, P520
[3]  
Cottle R. W., 1974, LINEAR ALGEBRA APPL, V8, P189
[4]   AN IDENTITY FOR SCHUR COMPLEMENT OF A MATRIX [J].
CRABTREE, DE ;
HAYNSWORTH, EV .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 22 (02) :364-+
[5]   ALMOST DEFINITE OPERATORS AND ELECTRO-MECHANICAL SYSTEMS [J].
DUFFIN, RJ ;
MORLEY, TD .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 35 (01) :21-30
[6]  
Glazman IM., 1974, FINITE DIMENSIONAL L
[7]  
Ostrowski A., 1971, LINEAR ALGEBRA APPL, V4, P389