SEMIPARAMETRIC ESTIMATION FROM TIME-SERIES WITH LONG-RANGE DEPENDENCE

被引:21
作者
CHENG, B
ROBINSON, PM
机构
[1] UNIV LONDON LONDON SCH ECON & POLIT SCI, DEPT ECON, LONDON WC2A 2AE, ENGLAND
[2] UNIV KENT, KENT CT2 7N2, ENGLAND
基金
英国经济与社会研究理事会;
关键词
AVERAGED DERIVATIVE STATISTICS; LONG MEMORY;
D O I
10.1016/0304-4076(94)90068-X
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper studies the behaviour, in the presence of long-memory time-series dependence, of semiparametric averaged derivative statistics, which are useful in statistical inference on index models. They were shown to be asymptotically normal under weak dependence conditions by Robinson (1989) and under serial independence by Powell et al. (1989). We find that an element of long-range dependence can lead either to a nonnormal limiting distribution, or else to a normal one with a limiting variance which differs from that which obtains in case of weak dependence, implying that inferences incorrectly based on weak-dependence assumptions will be invalid.
引用
收藏
页码:335 / 353
页数:19
相关论文
共 24 条
[1]   LARGE-SAMPLE ESTIMATION FOR MEAN OF A STATIONARY RANDOM SEQUENCE [J].
ADENSTEDT, RK .
ANNALS OF STATISTICS, 1974, 2 (06) :1095-1107
[2]   REGRESSION-ANALYSIS WHEN DEPENDENT VARIABLE IS TRUNCATED NORMAL [J].
AMEMIYA, T .
ECONOMETRICA, 1973, 41 (06) :997-1016
[3]  
CHENG B, 1991, STAT SINICA, V1, P335
[4]   THE TOBIT-MODEL WITH SERIAL-CORRELATION [J].
DAGENAIS, MG .
ECONOMICS LETTERS, 1982, 10 (3-4) :263-267
[5]   THE EMPIRICAL PROCESS OF SOME LONG-RANGE DEPENDENT SEQUENCES WITH AN APPLICATION TO U-STATISTICS [J].
DEHLING, H ;
TAQQU, MS .
ANNALS OF STATISTICS, 1989, 17 (04) :1767-1783
[6]   ON U-STATISTICS AND V MISES STATISTICS FOR WEAKLY DEPENDENT PROCESSES [J].
DENKER, M ;
KELLER, G .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 64 (04) :505-522
[7]   NON-CENTRAL LIMIT-THEOREMS FOR NONLINEAR FUNCTIONALS OF GAUSSIAN FIELDS [J].
DOBRUSHIN, RL ;
MAJOR, P .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 50 (01) :27-52
[8]  
Grether D.M., 1982, GAMES EC DYNAMICS TI, P291
[9]  
Hall P., 1980, MARTINGALE LIMIT THE
[10]  
Ibragimov I., 1971, INDEPENDENT STATIONA