RELATIVISTIC ENERGY-MOMENTUM TENSOR IN POLARIZED MEDIA .3. STATISTICAL THEORY OF ENERGY-MOMENTUM LAWS

被引:24
作者
DEGROOT, SR
SUTTORP, LG
机构
[1] Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Amsterdam
来源
PHYSICA | 1968年 / 39卷 / 01期
关键词
D O I
10.1016/0031-8914(68)90045-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
From the atomic conservation laws of energy-momentum the corresponding macroscopic laws are derived with the help of a covariant averaging procedure. The total energy-momentum tensor is found as a statistical expression in terms of atomic quantities. It may be split into a field part Tαβ({cauchy integral}) (α, β = 0, 1, 2, 3) containing the macroscopic fields and polarizations, which in the rest frame reads: Tαβ({cauchy integral}) = 1 2E2+ 1 2B2 (E ∧ H)i (E∧H)i -EiDj-HiBj+( 1 2E2+ 1 2B2-M{dot operator}B)gij(i,j =1,2,3)and a material part Tαβ(m) which forms the relativistic generalization of the usual energy and momentum expressions. © 1968.
引用
收藏
页码:28 / &
相关论文
共 7 条
[1]  
Abraham M., 1909, RC CIRC MAT PALERMO, V28, P1, DOI DOI 10.1007/BF03018208
[2]   RELATIVISTIC ENERGY-MOMENTUM TENSOR IN POLARIZED MEDIA .2. ANGULAR MOMENTUM LAWS AND SYMMETRY OF ENERGY-MOMENTUM TENSOR [J].
DEGROOT, SR ;
SUTTORP, LG .
PHYSICA, 1967, 37 (02) :297-&
[3]  
DEGROOT SR, 1967, PHYSICA, V37, P284, DOI 10.1016/0031-8914(67)90163-2
[4]   DERIVATION OF MAXWELLS EQUATIONS - STATISTICAL THEORY OF MACROSCOPIC EQUATIONS [J].
DEGROOT, SR ;
VLIEGER, J .
PHYSICA, 1965, 31 (03) :254-&
[5]  
Einstein A, 1908, ANN PHYS-BERLIN, V26, P541
[6]  
LORENTZ HA, 1904, ENC MATH WISS, V2, P1
[7]  
Minkowski Hermann, 1908, NACHR GES WISS GOTT, V1, P53, DOI DOI 10.1007/BF01455871