SYMMETRICAL SPLINE PROCEDURES FOR BOUNDARY-VALUE-PROBLEMS WITH MIXED BOUNDARY-CONDITIONS

被引:5
作者
BHATTA, SK [1 ]
SASTRI, KS [1 ]
机构
[1] INDIAN INST TECHNOL,DEPT MATH,KHARAGPUR 721302,W BENGAL,INDIA
关键词
BOUNDARY VALUE PROBLEMS; SPLINE FUNCTIONS; SYMMETRICAL MATRICES; CONVERGENCE;
D O I
10.1016/0377-0427(93)90043-B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a class of boundary value problems of the form y'' = P(x)y + Q(x), a less-than-or-equal-to x less-than-or-equal-to b (linear) or y'' = f(x, y), a less-than-or-equal-to x less-than-or-equal-to b (nonlinear), subject to mixed boundary conditions y'(a)-Cy(a) = alpha, y'(b) + Dy(b) = beta. Symmetric global spline procedures are developed for the above-mentioned problems and their convergence is analysed. Finally computational efficiency and convergence orders are also illustrated through numerical examples.
引用
收藏
页码:237 / 250
页数:14
相关论文
共 14 条
[1]  
Ahlberg J. H., 1967, THEORY SPLINES THEIR
[2]  
BHATTA SK, 1991, INT J COMPUT MATH, V40
[3]   A NEW 4TH-ORDER CUBIC SPLINE METHOD FOR 2ND-ORDER NONLINEAR 2-POINT BOUNDARY-VALUE-PROBLEMS [J].
CHAWLA, MM ;
SUBRAMANIAN, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1988, 23 (01) :1-10
[4]  
CHAWLA MM, 1978, J I MATH APPL, V21, P83
[5]  
Collatz L., 1966, FUNCTIONAL ANAL NUME
[6]  
FIEDLER M, 1986, SPECIAL MATRICES THE
[7]  
GERALD CF, 1984, APPLIED NUMERICAL AN
[8]  
HENRICI P., 1962, DISCRETE VARIABLE ME
[9]  
Jain MK, 1984, NUMERICAL SOLUTION D
[10]  
Keller HerbertB., 2018, NUMERICAL METHODS 2