Asymptotic expansion for a solution of an ordinary second-order differential equation with three turning points

被引:0
作者
Tursunov, D. A. [1 ]
机构
[1] Urals State Pedag Univ, Ekaterinburg, Russia
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2016年 / 22卷 / 01期
关键词
asymptotic expansion; turning point; singular (bisingular) perturbation; ordinary second-order differential equation; Airy equation; modified Bessel functions; Dirichlet problem; generalized boundary function; small parameter;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the generalized method of boundary functions, we construct a uniform asymptotic expansion of the solution of the Dirichlet problem for a singularly perturbed linear inhomogeneous ordinary second-order differential equation with three turning points on the real axis. The constructed asymptotic series is a Puiseux series.
引用
收藏
页码:271 / 281
页数:11
相关论文
共 12 条
[1]   Generalization of the boundary function method for solving boundary-value problems for bisingularly perturbed second-order differential equations [J].
Alymkulov, K. ;
Asylbekov, T. D. ;
Dolbeeva, S. F. .
MATHEMATICAL NOTES, 2013, 94 (3-4) :451-454
[2]  
Alymkulov K., 2004, DOKL AKAD NAUK+, V398, P583
[3]  
[Алымкулов Келдибай Alymkulov Keldibay], 2012, [Математические заметки, Mathematical Notes, Matematicheskie zametki], V92, P819, DOI 10.4213/mzm10147
[4]  
Alymkulov Keldibay., 2014, UNIVERSAL J APPL MAT, V2, P119, DOI [10.13189/ujam.2014.020301, DOI 10.13189/UJAM.2014.020301]
[5]  
FEDORYUK MV, 1983, ASIMPTOTICHESKIE MET
[6]  
Il'in A.M., 2009, ASIMPTOTICHESKIE MET
[7]  
Ilin A.M., 1989, SOGLASOVANIE ASIMPTO
[8]   CONNECTION FORMULAS FOR 2ND-ORDER DIFFERENTIAL-EQUATIONS WITH MULTIPLE TURNING POINTS [J].
OLVER, FWJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1977, 8 (01) :127-154
[9]   CONNECTION FORMULAS FOR 2ND-ORDER DIFFERENTIAL-EQUATIONS HAVING AN ARBITRARY NUMBER OF TURNING POINTS OF ARBITRARY MULTIPLICITIES [J].
OLVER, FWJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1977, 8 (04) :673-700
[10]  
TURSUNOV DA, 2013, VESTN TOMSK GOS U MA, V1, P34