Membrane fluidity of bovine platelets was examined with diphenylhexatriene (DPH), its cationic trimethylammonium derivative (TMA-DPH) and anionic propionic acid derivative (DPH-PA). After addition of these probes to platelet suspensions at 37-degrees-C, the fluorescence intensity of DPH-PA reached equilibrium within 2 min, whereas those of DPH and TMA-DPH increased gradually. With increase in the fluorescence intensity of TMA-DPH, its fluorescence anisotropy decreased significantly, but the fluorescence anisotropies of DPH-PA adn DPH did not change during incubation. The gradual increase of fluorescence intensity of TMA-DPH was due to its penetration into the cytoplasmic side of the platelet membrane, as shown quantitatively by monitoring decrease in its extractability with albumin. Transbilayer movement of TMA-DPH was markedly temperature-dependent, and was scarcely observed at 15-degrees-C. The fluorescence intensity of TMA-DPH was much higher in platelet membranes and vesicles of extracted membrane lipids than the initial intensity in intact platelets. Moreover, the fluorescence anisotropy of TMA-DPH was much lower in the former preparation than the initial value in intact platelets. These results suggest that binding sites for TMA-DPH in the cytoplasmic side of the platelet membrane are more fluid than those in the outer leaflet of the plasma membrane. Platelet activation by ionomycin induced specific change in the fluorescence properties of TMA-DPH without causing transbilayer incorporation of the probe.