ELECTROMAGNETIC-WAVE DIFFRACTION BY CYLINDRICAL BODIES WITH EDGES

被引:7
作者
VAVILOV, VN
VELIEV, EI
机构
[1] Institute of Radiophysics and Electronics, Ukrainian Academy of Sciences, Kharkov
关键词
D O I
10.1080/02726349308908357
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An accurate numerical-analytical method of solution of the problem of wave diffraction by a perfectly conductive cylindrical body with a cross-section formed by crossing of the ''key'' elements (such as flat strips and cylindrical screens) is proposed. It is based on the ideas of the moment method and the partial inversion technique of the initial problem operator. For this problem, Gegenbauer polynomials form a complete orthogonal system of the basic functions. As a result, the initial problem is reduced to the solving of infinite systems of linear algebraic equations. Examples of the flat strip, two crossing cylinders (the cylindrical body with an ogival cross-section) and four quadrangular bodies are studied. Surface current density distributions, total scattering cross sections and radiation patterns are investigated by means of computer calculations.
引用
收藏
页码:339 / 357
页数:19
相关论文
共 17 条
[1]  
Mei K.K., Van Bladle J.G., Scattering by perfectly conducting rectangular cylinders, IEEE Trans, AP-11, 2, pp. 183-193, (1963)
[2]  
Abdelmessih S., Sinclar G., ’Treatment of singularities in scattering from perfectly conducting polygonal cylinders - a numerical technique, Can. Jour. Pkys, 45, 3, pp. 1305-1319, (1967)
[3]  
Hunter J.D., Can. Jour. Phys, 50, 1, pp. 139-150, (1972)
[4]  
Keller J.B., ’Geometrical theory of diffraction, J. Opt. Soc. Am, 52, pp. 116-130, (1962)
[5]  
Srikanth S., Pathak P.H., Chuang C.W., ’Perfectly conducting semicircular cylinder, IEEE Trans, AP-34, 10, pp. 1250-1257, (1956)
[6]  
Burnside W.D., Yu C.L., Marhefka R.J., A technique to combine the geometrical theory of diffraction and the moment method, IEEE Trans, AP-23, 6, pp. 551-558, (1975)
[7]  
Mullar R.F., ’Singularities of two-dimensional exterior solution of the Helmholtz equation, Proc. Cambridge Phylos. Soc, 69, pp. 175-188, (1971)
[8]  
Van Der Berg P.M., Fokkema J.T., ’The Reyleigh hypothesis in the theory of refraction by a grating, J.Opt. Soc. Am, 69, pp. 27-31, (1979)
[9]  
Ikuno H., Yasuura K., Numerical calculation of the scattered field from a periodic deformed cylinder using the smoothing process on the mode-matching method, Radio Science, 13, 6, pp. 937-946, (1978)
[10]  
Okuno Y., Yassuura K., ’Numerical algorithm based on the mode-matching method with a singular-smoothing procedure for analyzing edge-type scattering problems, IEEE Trans, AP-30, 4, pp. 580-587, (1982)