RENORMALIZED PERTURBATION EXPANSIONS AND FERMI-LIQUID THEORY

被引:111
|
作者
HEWSON, AC
机构
[1] Department of Mathematics, Imperial College
关键词
D O I
10.1103/PhysRevLett.70.4007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a procedure for a renormalized perturbation expansion. It is demonstrated for the Anderson impurity model, but has wide potential application. To zero order it describes the Landau noninteracting quasiparticles. To first order in the renormalized interaction U it gives the exact thermodynamic results for low temperatures, and to second order gives the exact T2 coefficient for the resistivity. The approach is not restricted to the Fermi liquid regime and provides a framework for systematic corrections to Fermi liquid theory.
引用
收藏
页码:4007 / 4010
页数:4
相关论文
共 50 条
  • [1] DECAY OF A PERTURBATION IN A FERMI-LIQUID
    BROOKER, GA
    SYKES, J
    ANNALS OF PHYSICS, 1972, 74 (01) : 67 - &
  • [2] THEORY OF SUPERFLUID FERMI-LIQUID
    AKHIEZER, AI
    KRASILNIKOV, VV
    PELETMINSKII, SV
    YATSENKO, AA
    USPEKHI FIZICHESKIKH NAUK, 1993, 163 (02): : 1 - 32
  • [3] ON THE THEORY OF A SUPERFLUID FERMI-LIQUID
    KRASILNIKOV, VV
    PELETMINSKIJ, SV
    YATSENKO, AA
    PHYSICA A, 1990, 162 (03): : 513 - 541
  • [4] THEORY OF FERROMAGNETIC FERMI-LIQUID
    AKHIEZER, IA
    SYSHCHENKO, VG
    CHUDNOVSKII, EM
    FIZIKA TVERDOGO TELA, 1974, 16 (12): : 3684 - 3689
  • [5] Singular corrections to the Fermi-liquid theory
    Chubukov, AV
    Maslov, DL
    PHYSICAL REVIEW B, 2004, 69 (12)
  • [6] FERMI-LIQUID THEORY IN 2 DIMENSIONS
    YARLAGADDA, S
    KURIHARA, S
    PHYSICA B-CONDENSED MATTER, 1993, 186-88 : 971 - 974
  • [7] FERMI-LIQUID THEORY FOR FINITE SYSTEMS
    YUKAWA, T
    NUCLEAR PHYSICS A, 1983, 403 (02) : 298 - 316
  • [8] FERMI-LIQUID THEORY FOR INTERBAND TRANSITIONS
    CRAIG, RA
    ANNALS OF PHYSICS, 1971, 64 (01) : 149 - &
  • [9] Fermi-liquid theory for anisotropic superconductors
    Walker, MB
    PHYSICAL REVIEW B, 2001, 64 (13):
  • [10] FERMI-LIQUID THEORY IN 2 DIMENSIONS
    GRIMMER, DP
    PHYSICA B & C, 1981, 106 (01): : 9 - 21