HARNACK ESTIMATES AND EXTINCTION PROFILE FOR WEAK SOLUTIONS OF CERTAIN SINGULAR PARABOLIC EQUATIONS

被引:46
作者
DIBENEDETTO, E [1 ]
KWONG, YC [1 ]
机构
[1] NO ILLINOIS UNIV,DEPT MATH,DE KALB,IL 60115
关键词
D O I
10.2307/2153935
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish an intrinsic Harnack estimate for nonnegative weak solutions of the singular equation (1.1) below, for m in the optimal range ((N - 2)+/N, 1). Intrinsic means that, due to the singularity, the space-time dimensions in the parabolic geometry must be rescaled by a factor determined by the solution itself. Consequences are, sharp supestimates on the solutions and decay rates as t approaches the extinction time. Analogous results are shown for p-laplacian type equations.
引用
收藏
页码:783 / 811
页数:29
相关论文
共 24 条
[1]   A NEW APPROACH TO INITIAL TRACES IN NONLINEAR FILTRATION [J].
ANDREUCCI, D ;
DIBENEDETTO, E .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (04) :305-334
[2]   LOCAL BEHAVIOR OF SOLUTIONS OF QUASILINEAR PARABOLIC EQUATIONS [J].
ARONSON, DG ;
SERRIN, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1967, 25 (02) :81-&
[3]   THE CONTINUOUS DEPENDENCE ON PHI OF SOLUTIONS OF UT-DELTA-PHI(U)=0 [J].
BENILAN, P ;
CRANDALL, MG .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (02) :161-177
[4]  
BERRYMAN JG, 1980, ARCH RATION MECH AN, V74, P379, DOI 10.1007/BF00249681
[5]   EVOLUTION OF A STABLE PROFILE FOR A CLASS OF NONLINEAR DIFFUSION EQUATIONS WITH FIXED BOUNDARIES [J].
BERRYMAN, JG .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (11) :2108-2115
[6]  
CHEN YZ, 1988, ARCH RATION MECH AN, V103, P319
[8]   NONNEGATIVE SOLUTIONS OF THE EVOLUTION P-LAPLACIAN EQUATION - INITIAL TRACES AND CAUCHY-PROBLEM WHEN 1-LESS-THAN-P-LESS-THAN-2 [J].
DIBENEDETTO, E ;
HERRERO, MA .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (03) :225-290
[9]  
Hadamard J., 1954, REND CIRC MAT PALERM, V3, P337
[10]   THE CAUCHY-PROBLEM FOR UT=DELTAUM WHEN O LESS-THAN M LESS-THAN 1 [J].
HERRERO, MA ;
PIERRE, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 291 (01) :145-158