STATISTICAL-INFERENCE USING MAXIMUM-LIKELIHOOD-ESTIMATION AND THE GENERALIZED LIKELIHOOD RATIO WHEN THE TRUE PARAMETER IS ON THE BOUNDARY OF THE PARAMETER SPACE

被引:48
作者
FENG, ZD
MCCULLOCH, CE
机构
[1] CORNELL UNIV,BIOMETRY UNIT,ITHACA,NY 14853
[2] CORNELL UNIV,CTR STAT,ITHACA,NY 14853
关键词
RESTRICTED INFERENCE; EXTENDED PARAMETER SPACE; ASYMPTOTIC MAXIMUM LIKELIHOOD;
D O I
10.1016/0167-7152(92)90042-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The classic asymptotic properties of the maximum likelihood estimator and generalized likelihood ratio statistic do not hold when the true parameter is on the boundary of the parameter space. An inferential procedure based on an enlarged parameter space is shown to have the classical asymptotic properties. Some other competing procedures are also examined.
引用
收藏
页码:325 / 332
页数:8
相关论文
共 10 条
[1]  
CHANT D, 1974, BIOMETRIKA, V61, P291, DOI 10.2307/2334357
[2]   ON THE DISTRIBUTION OF THE LIKELIHOOD RATIO [J].
CHERNOFF, H .
ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (03) :573-578
[3]  
Cox D.R., 1974, THEORETICAL STAT
[4]  
CRAMER H, 1946, MATH METHODS STATIST
[5]  
EDLEFSEN LE, 1988, GAUSS VERSION 2 0
[6]   APPLICATION OF STEPWISE REGRESSION TO NON-LINEAR ESTIMATION [J].
JENNRICH, RI ;
SAMPSON, PF .
TECHNOMETRICS, 1968, 10 (01) :63-&
[7]  
Lehmann EH., 1983, THEORY POINT ESTIMAT
[8]   MAXIMUM-LIKELIHOOD ESTIMATION IN NON-STANDARD CONDITIONS [J].
MORAN, PAP .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 70 (NOV) :441-&
[9]  
SEARLE SR, 1987, UNPUB LECTURE NOTES
[10]   ASYMPTOTIC PROPERTIES OF MAXIMUM-LIKELIHOOD ESTIMATORS AND LIKELIHOOD RATIO TESTS UNDER NONSTANDARD CONDITIONS [J].
SELF, SG ;
LIANG, KY .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1987, 82 (398) :605-610