THE BRAID GROUP-REPRESENTATIONS ASSOCIATED WITH SOME NONFUNDAMENTAL REPRESENTATIONS OF LIE-ALGEBRAS

被引:25
作者
GE, ML
LI, YQ
WANG, LY
XUE, K
机构
[1] Theor. Phys. Div., Nankai Inst. of Math., Tianjin
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 05期
关键词
D O I
10.1088/0305-4470/23/5/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The braid group representations associated with the eight-dimensional representation of B3 and six-dimensional representation of A 2, including the quantum Lie algebra connected with the latter, are explicitly calculated.
引用
收藏
页码:605 / 618
页数:14
相关论文
共 26 条
[11]   A POLYNOMIAL INVARIANT FOR KNOTS VIA VONNEUMANN-ALGEBRAS [J].
JONES, VFR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :103-111
[12]  
JONES VFR, 1988, KNOT INVARIANTS RELA
[13]  
Kauffman L., 1987, ANN MATH STUD, V115
[14]  
KAUFFMAN LH, 1988, KNOT THEORY APPLICAT
[15]  
KAUFFMAN LH, 1989, BRAID GROUP KNOT THE, P27
[16]  
KNIZHNIK VG, 1984, NUCL PHYS B, V247, P83, DOI 10.1016/0550-3213(84)90374-2
[17]  
KOHNO T, 1989, QUANTUM UNIVERSAL EN
[18]  
KOHNO T, IN PRESS 1988 NANK L
[19]   STRANGE STATISTICS, BRAID GROUP-REPRESENTATIONS AND MULTIPOINT FUNCTIONS IN THE NORMAL-COMPONENT MODEL [J].
LEE, HC ;
GE, ML ;
COUTURE, M ;
WU, YS .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (09) :2333-2370
[20]   POLYNOMIAL EQUATIONS FOR RATIONAL CONFORMAL FIELD-THEORIES [J].
MOORE, G ;
SEIBERG, N .
PHYSICS LETTERS B, 1988, 212 (04) :451-460