CYCLES IN RANDOM GRAPHS

被引:11
作者
LUCZAK, T
机构
[1] Department of Discrete Mathematics, Adam Mickiewicz University, Poznań
关键词
D O I
10.1016/0012-365X(91)90379-G
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G(n, p) be a graph on n vertices in which each possible edge is presented independently with probability p = p(n) and upsilon-1(n, p) denote the number of vertices of degree 1 in G(n, p). It is shown that if epsilon > 0 and np(n) --> infinity then the probability that G(n, p) contains cycles of all lengths r, 3 less-than-or-equal-to r less-than-or-equal-to n - (1 + epsilon)upsilon-1(n, p), tends to 1 as n --> infinity.
引用
收藏
页码:231 / 236
页数:6
相关论文
共 7 条
[1]  
BOLLOBAS B, 1986, RANDOM GRAPHS
[2]  
ERDOS P, 1960, MAGYAR TUD AKAD MAT, V5, P17
[3]   ON LARGE MATCHINGS AND CYCLES IN SPARSE RANDOM GRAPHS [J].
FRIEZE, AM .
DISCRETE MATHEMATICS, 1986, 59 (03) :243-256
[4]  
KORSHUNOV A., 1976, SOV MATH DOKL, V17, P760
[5]   ON K-LEAF CONNECTIVITY OF A RANDOM GRAPH [J].
LUCZAK, T .
JOURNAL OF GRAPH THEORY, 1988, 12 (01) :1-10
[6]  
LUCZAK T, 1987, ANN DISCRETE MATH, V33, P171
[7]   LARGE CYCLES IN LARGE LABELED GRAPHS .2. [J].
WRIGHT, EM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1977, 81 (JAN) :1-2