GEOMETRIC HERMITE INTERPOLATION

被引:42
作者
HOLLIG, K
KOCH, J
机构
[1] Universität Stuttgart, Mathematisches Institut A, 70511 Stuttgart
关键词
SPINES; CURVES; INTERPOLATION; GEOMETRIC SMOOTHNESS; ACCURACY;
D O I
10.1016/0167-8396(94)00034-P
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We show that for space curves the performance of standard cubic Hermite interpolation can be improved by interpolating a third point within the parameter interval. The resulting method is easy to implement and achieves the optimal approximation order 5.
引用
收藏
页码:567 / 580
页数:14
相关论文
共 18 条
[1]  
de Boor C., 1987, Computer-Aided Geometric Design, V4, P269, DOI 10.1016/0167-8396(87)90002-1
[2]  
Degen W.L.F., 1992, MATH METHODS CAGD 2, P171
[3]   HIGH ACCURATE RATIONAL APPROXIMATION OF PARAMETRIC CURVES [J].
DEGEN, WLF .
COMPUTER AIDED GEOMETRIC DESIGN, 1993, 10 (3-4) :293-313
[4]  
Dokken T., 1990, Computer-Aided Geometric Design, V7, P33, DOI 10.1016/0167-8396(90)90019-N
[5]  
ECK M, 1992, COMPUTER AIDED GEOME, V10, P237
[6]   CHEBYSHEV-APPROXIMATION OF PLANE-CURVES BY SPLINES [J].
EISELE, EF .
JOURNAL OF APPROXIMATION THEORY, 1994, 76 (02) :133-148
[7]   Approximation of circular arcs by cubic polynomials [J].
Goldapp, Michael .
Computer Aided Geometric Design, 1991, 8 (03) :227-238
[8]   ON THE APPROXIMATION OF PLANE-CURVES BY PARAMETRIC CUBIC-SPLINES [J].
HANNA, MS ;
EVANS, DG ;
SCHWEITZER, PN .
BIT, 1986, 26 (02) :217-232
[9]  
HOLLIG K, 1988, 5TH T ARM C APPL MAT, P287
[10]  
Hoschek J., 1987, Computer-Aided Geometric Design, V4, P59, DOI 10.1016/0167-8396(87)90024-0