REMOVABLE SINGULARITIES OF LOCALLY QUASI-CONFORMAL MAPS

被引:2
作者
DAIRBEKOV, NS
机构
关键词
D O I
10.1007/BF00972950
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:159 / 161
页数:3
相关论文
共 50 条
[21]   QUASI-CONFORMAL HOMEOMORPHISMS ON LOCALLY CONVEX-SPACES [J].
CRACIUNAS, S .
LECTURE NOTES IN MATHEMATICS, 1983, 1013 :50-67
[23]   BOUNDARY VARIATION AND QUASI-CONFORMAL MAPS OF RIEMANN SURFACES [J].
TANIGUCHI, M .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1992, 32 (04) :957-966
[24]   STRONGLY UNIFORM DOMAINS AND PERIODIC QUASI-CONFORMAL MAPS [J].
HEINONEN, J ;
YANG, SS .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE SERIES A1-MATHEMATICA, 1995, 20 (01) :123-148
[25]   ON QUASI-CONFORMAL MAPPINGS WITH LOCALLY INTEGRABLE BOUNDARY OF THE DEFORMATIONS [J].
RYAZANOV, VI .
DOKLADY AKADEMII NAUK, 1993, 332 (06) :693-695
[26]   FUNCTIONAL INEQUALITIES, JACOBI PRODUCTS, AND QUASI-CONFORMAL MAPS [J].
VAMANAMURTHY, MK ;
VUORINEN, M .
ILLINOIS JOURNAL OF MATHEMATICS, 1994, 38 (03) :394-419
[27]   CONVERGENCE AND DEGENERATION OF QUASI-CONFORMAL MAPS ON RIEMANNIAN MANIFOLD [J].
FERRAND, J .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (05) :437-440
[28]   APPROXIMATION OF QUASI-CONFORMAL HOMEOMORPHISMS BY SIMPLICIAL QUASI-CONFORMAL HOMEOMORPHISMS [J].
GOLDSHTE.VM .
DOKLADY AKADEMII NAUK SSSR, 1973, 213 (01) :23-25
[29]   Harmonic extensions of quasi-conformal maps to hyperbolic space [J].
Hardt, R ;
Wolf, M .
HARMONIC MORPHISMS, HARMONIC MAPS, AND RELATED TOPICS, 2000, 413 :147-151
[30]   DISCRETE QUASI-CONFORMAL GROUPS THAT ARE NOT THE QUASI-CONFORMAL CONJUGATES OF MOBIUS GROUPS [J].
MARTIN, GJ .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1986, 11 (02) :179-202