On three dimensional quasi-Sasakian manifolds

被引:0
作者
Ghosh, Nandan [1 ]
Tarafdar, Manjusha [2 ]
机构
[1] Asutosh Coll, Dept Math, Kolkata 700019, W Bengal, India
[2] Univ Calcutta, Dept Pure Math, Kolkata 700019, W Bengal, India
来源
TBILISI MATHEMATICAL JOURNAL | 2016年 / 9卷 / 01期
关键词
Quasi-Sasakian manifold; Eigen values;
D O I
10.1515/tmj-2016-0003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a 3-dimensional quasi-Sasakian manifold. Olszak [6] proved that M is conformally at with constant scalar curvature and hence its structure function beta is constant. We have shown that in such M, a second order symmetric parallel tensor is a constant multiple of the associated metric tensor. A necessary and sufficient condition for such a manifold to be minimal has been obtained. Finally if such M satisfies R(X,Y).S = 0, then, S has two different non-zero eigen values.
引用
收藏
页码:23 / 28
页数:6
相关论文
共 50 条
[21]   ON (is an element of)-TRANS-SASAKIAN MANIFOLDS [J].
Prasad, Rajendra ;
Prakash, Jai .
BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 5 (01) :86-98
[22]   Eigenvalue estimates for generalized Dirac operators on Sasakian manifolds [J].
Kim, Eui Chul .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2014, 45 (01) :67-93
[23]   Eigenvalue estimates for generalized Dirac operators on Sasakian manifolds [J].
Eui Chul Kim .
Annals of Global Analysis and Geometry, 2014, 45 :67-93
[24]   SOME PROPERTIES OF HYPERBOLIC CONTACT MANIFOLD IN A QUASI SASAKIAN MANIFOLD [J].
Rahman, S. .
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2011, 1 (01) :41-48
[25]   THE ENERGY-MOMENTUM TENSOR ON LOW DIMENSIONAL Spinc MANIFOLDS [J].
Habib, Georges ;
Nakad, Roger .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (09)
[26]   Monopole Floer homology and the spectral geometry of three-manifolds [J].
Lin, Francesco .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2020, 28 (05) :1211-1219
[27]   The Multiplicity of Eigenvalues of the Hodge Laplacian on 5-Dimensional Compact Manifolds [J].
Megan E. Gier ;
Peter D. Hislop .
The Journal of Geometric Analysis, 2016, 26 :3176-3193
[28]   The Multiplicity of Eigenvalues of the Hodge Laplacian on 5-Dimensional Compact Manifolds [J].
Gier, Megan E. ;
Hislop, Peter D. .
JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (04) :3176-3193
[29]   ONE-DIMENSIONAL QUASI-RELATIVISTIC PARTICLE IN THE BOX [J].
Kaleta, Kamil ;
Kwasnicki, Mateusz ;
Malecki, Jacek .
REVIEWS IN MATHEMATICAL PHYSICS, 2013, 25 (08)
[30]   ON A RIEMANN SOLVER FOR THREE-DIMENSIONAL RANS [J].
Chuvakhov, Pavel Vladimirovich .
COMPUTATIONAL THERMAL SCIENCES, 2014, 6 (05) :369-381