Approximation by Normal Distribution for a Sample Sum in Sampling Without Replacement from a Finite Population
被引:0
|
作者:
Bin Mohamed, Ibrahim
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaya, Kuala Lumpur, MalaysiaUniv Malaya, Kuala Lumpur, Malaysia
Bin Mohamed, Ibrahim
[1
]
Mirakhmedov, Sherzod M.
论文数: 0引用数: 0
h-index: 0
机构:
Inst Math, Tashkent, UzbekistanUniv Malaya, Kuala Lumpur, Malaysia
Mirakhmedov, Sherzod M.
[2
]
机构:
[1] Univ Malaya, Kuala Lumpur, Malaysia
[2] Inst Math, Tashkent, Uzbekistan
来源:
SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY
|
2016年
/
78卷
/
02期
关键词:
Berry-Esseen bound;
Edgeworth expansion;
Lindeberg condition;
Large deviation;
Finite population;
Sample sum;
Sampling without replacement;
D O I:
暂无
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
A sum of observations derived by a simple random sampling design from a population of independent random variables is studied. A procedure finding a general term of Edgeworth asymptotic expansion is presented. The Lindeberg condition of asymptotic normality, Berry-Esseen bound, Edgeworth asymptotic expansions under weakened conditions and Cramer type large deviation results are derived.