MAXIMUM-LIKELIHOOD-ESTIMATION FOR MULTIVARIATE NORMAL-DISTRIBUTION WITH MONOTONE SAMPLE

被引:30
作者
JINADASA, KG
TRACY, DS
机构
[1] ILLINOIS STATE UNIV,DEPT MATH,NORMAL,IL 61761
[2] UNIV WINDSOR,DEPT MATH & STAT,WINDSOR N9B 3P4,ONTARIO,CANADA
关键词
MULTIVARIATE NORMAL; MISSING DATA; MONOTONE SAMPLE; MAXIMUM LIKELIHOOD ESTIMATION; MATRIX DERIVATIVES;
D O I
10.1080/03610929208830763
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Closed forms are obtained for the maximum likelihood estimators of the mean vector and the covariance matrix of a multivariate normal model with a k-step monotone missing data pattern. Matrix derivatives are used in the derivation. Our results extend those of Anderson and Olkin (1985) for the 2-step missing data pattern.
引用
收藏
页码:41 / 50
页数:10
相关论文
共 5 条
[1]   MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF A MULTIVARIATE NORMAL-DISTRIBUTION [J].
ANDERSON, TW ;
OLKIN, I .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1985, 70 (OCT) :147-171
[3]  
Henderson H. V., 1979, CANADIAN J STATISTIC, V7, P65, DOI DOI 10.2307/3315017
[4]  
LITTLE R, 1987, STATISTICAL ANAL MIS
[5]  
SRIVASTAVA MS, 1983, INTRO APPLIED MULTIV