PARAMETER ANALYSIS OF THE JENSEN-SHANNON DIVERGENCE FOR SHOT BOUNDARY DETECTION IN STREAMING MEDIA APPLICATIONS

被引:2
|
作者
De Klerk, M. G. [1 ]
Venter, W. C. [1 ]
Hoffman, A. J. [1 ]
机构
[1] North West Univ, Sch Elect Elect & Comp Engn, Potchefstoom, South Korea
来源
SAIEE AFRICA RESEARCH JOURNAL | 2018年 / 109卷 / 03期
关键词
Jensen-Shannon Divergence; shot boundary detection; threshold parameters;
D O I
10.23919/SAIEE.2018.8532193
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Shot boundary detection is an integral part of multimedia, be it video management or video processing. Multiple boundary detection techniques have been developed throughout the years, but are only applicable to very specific instances. The Jensen-Shannon divergence (JSD) is one such a technique that can be implemented to detect the shot boundaries in digital videos. This paper investigates the use of the JSD algorithm to detect shot boundaries in streaming media applications. Furthermore, the effects of the various parameters used by the JSD technique, on the accuracy of the detected boundaries, are quantified by the recall and precision metrics all the while keeping track of how they affect the execution time.
引用
收藏
页码:171 / 181
页数:11
相关论文
共 50 条
  • [41] Differential privacy preserving dynamic data release scheme based on Jensen-Shannon divergence
    Cai, Ying
    Zhang, Yu
    Qu, Jingjing
    Li, Wenjin
    CHINA COMMUNICATIONS, 2022, 19 (06) : 11 - 21
  • [42] RSSI Probability Density Functions Comparison Using Jensen-Shannon Divergence and Pearson Distribution
    Lionis, Antonios
    Peppas, Konstantinos P.
    Nistazakis, Hector E.
    Tsigopoulos, Andreas
    TECHNOLOGIES, 2021, 9 (02)
  • [43] k-Medoids Clustering Based on Kernel Density Estimation and Jensen-Shannon Divergence
    Hamasuna, Yukihiro
    Kingetsu, Yuto
    Nakano, Shusuke
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI 2019), 2019, 11676 : 272 - 282
  • [44] A novel time domain structural damage diagnosis method using Jensen-Shannon Divergence
    Liu, Chengyin
    Han, Xishuang
    Ji, Xingle
    JOURNAL OF VIBROENGINEERING, 2015, 17 (06) : 2922 - 2932
  • [45] Jensen-Shannon Divergence Based Independent Component Analysis to Detect and Prevent Black Hole Attacks in Healthcare WSN
    Sunder, A. John Clement
    Shanmugam, A.
    WIRELESS PERSONAL COMMUNICATIONS, 2019, 107 (04) : 1607 - 1623
  • [46] Setting lower bounds on Jensen-Shannon divergence and its application to nearest neighbor document search
    Dobrynin, V. Yu
    Rooney, N.
    Serdyuk, J. A.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2018, 14 (04): : 334 - 345
  • [47] Adaptive monitoring for geological drilling process using neighborhood preserving embedding and Jensen-Shannon divergence
    Fan, Haipeng
    Lu, Chengda
    Lai, Xuzhi
    Du, Sheng
    Yu, Wanke
    Wu, Min
    CONTROL ENGINEERING PRACTICE, 2023, 134
  • [48] Adaptive sampling approach based on Jensen-Shannon divergence for efficient reliability analysis基于Jensen-Shannon散度的自适应采样方法的高效可靠性分析
    Liang-jun Chen
    Yu Hong
    Sujith Mangalathu
    Hong-ye Gou
    Qian-hui Pu
    Journal of Central South University, 2021, 28 : 2407 - 2422
  • [49] Fractional Jensen-Shannon Analysis of the Scientific Output of Researchers in Fractional Calculus
    Tenreiro Machado, Jose A.
    Lopes, Antonio Mendes
    ENTROPY, 2017, 19 (03)
  • [50] PERFORMANCE OF JENSEN SHANNON DIVERGENCE IN INCIPIENT FAULT DETECTION AND ESTIMATION
    Zhang, Xiaoxia
    Delpha, Claude
    Diallo, Demba
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 2742 - 2746