STUDY OF EXTRAPOLATION METHODS BASED ON MULTISTEP SCHEMES WITHOUT PARASITIC SOLUTIONS

被引:83
作者
DEUFLHARD, P
机构
[1] Institut für angewandte Mathematik, Universität Heidelberg, Heidelberg
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 1979年 / 30卷 / 02期
关键词
D O I
10.1007/BF01601932
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper presents a theoretical approach to the construction of extrapolation methods for systems of the kind. {Mathematical expression} where L is a general linear differential operator of order k. For ε=0, the discretization schemes are required to be exact and to contain only solutions in the nullspace of L. For ε≠0, the paper studies the construction of methods that permit quadratic extrapolation. In the special case k=2, a new two-step method is obtained that applies to systems of the type {Mathematical expression} where A is a real, symmetric, positive semi-definite matrix. This algorithm might be of use in regular celestial mechanics-apart from any other possible applications. © 1979 Birkhäuser Verlag.
引用
收藏
页码:177 / 189
页数:13
相关论文
共 15 条
  • [1] Bauer F.L., 1963, PROC SYMPOS APPL MAT, V15, P199
  • [2] NUMERICAL TREATMENT OF ORDINARY DIFFERENTIAL EQUATIONS BY EXTRAPOLATION METHODS
    BULIRSCH, R
    STOER, J
    [J]. NUMERISCHE MATHEMATIK, 1966, 8 (01) : 1 - &
  • [3] Bulirsch R, 1964, NUMER MATH, V6, P413, DOI 10.1007/BF01386092
  • [4] Dahlquist GG, 1963, BIT, V3, P27, DOI [10.1007/BF01963532, DOI 10.1007/BF01963532]
  • [5] DEUFLHARD P, UNPUBLISHED
  • [6] DEUFLHARD P, 1978, TUMMATH7821 TU MUNCH
  • [7] Gragg WB, 1965, SIAM J NUM, V2, P384
  • [8] Henrici P, 1962, DISCRETE VARIABLE ME
  • [9] HERSCH J, 1958, Z ANGEW MATH PHYS, V9, P129
  • [10] HUSSELS HG, 1973, THESIS U KOLN